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Abstract 

We show that for several large classes of groups G, the poset ~o(G) of all pseudocompact 
group topologies of weight a on G contains a poset isomorphic to the power set of a whenever 
~a(G) ~ 0. This permits to describe in purely set-theoretic terms when G has bounded (from 
above) chains of pseudocompact group topologies of weight ~. Moreover, we show that these 
topologies may additionally have some of the following properties: linear (in particular, zero- 
dimensional), connected and locally connected, disconnected and locally connected, connected 
and nonlocally connected, etc. It turns out that the question of whether the cardinality of un- 
bounded chains of pseudocompact group topologies of weight col on ~ is larger than that of 
bounded ones cannot be answered in ZFC. We answer also questions posed by Comfort and 
Remus (1994) on pseudocompact topologization of a given weight. (~) 1998 Elsevier Science 
B.V. 

A M S  Classification: Primary 22A05, 22C05; secondary 54A10, 54A35, 54D05 

O. In trodu c t ion  

A topological group G is precompac t  if it is (algebraically and topologically isomor- 

phic to) a subgroup of  a compact group, or equivalently, if  the two-sided uniformity 

completion G of  G is a compact group [45]. A topological space is pseudocompac t  if  

every real-valued continuous function defined on it is bounded [26]. Let ~ ( G )  (resp. 
~ ( G ) )  denote the ordered set o f  all pseudocompact (resp. precompact) group topolo- 

gies on a group G ordered by inclusion. Since pseudocompact groups are precompact 
~ ( G )  C ~ ( G )  [15]. For every cardinal ~r denote by Mo(G) the subset o f  ~ ( G )  con- 

sisting o f  topologies of  weight a and let ~ ( G )  = ~ ( G )  N ~ ( G ) .  
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Comfort and Ross [15] showed that ~ ( G )  ¢ • for each infinite Abelian group G 
and actually even [~(G)[ -- 221cl - -  the highest amount possible (see [4, 35]). There 
are non-Abelian groups G with M(G) = ~: von Neumann and Wigner [43] showed this 
for the group SL(2, C) of all complex 2 × 2 matrices having determinant 1 (see also 
[6, 9.8]), and Gaughan [28] established the same for the group S(X)  of permutations 
of an infinite set X (another example is given in Section 3, Remark 3.5). By another 
classical result of van der Waerden t~(G)l  = [~o (a ) l  = 1 for a compact connected 
semisimple Lie group G, i.e. these groups admit a unique precompact topology, namely 
the given compact metrizable group topology. 

A detailed study of the poset ~ ( G )  and its poset invariants as height, depth and 
width (i.e. maximum size of well-ordered, anti-well-ordered subsets and antichains, 
respectively) in the case when G is Abelian was carried out in [4]. These results 
were extended later by Remus [35] for groups admitting "large" Abelian quotients (i.e. 
satisfying IG/G'I = [G[), in particular for free groups. Long chains in ~ ( G )  were 
produced by Comfort and Remus in [8]. They found also long chains of group topolo- 
gies from other classes of group topologies: nonprecompact, metrizable and linear, as 
well as nonpseudocompact linear topologies on free groups. (A topological group G is 
said to have linear topology if the open normal subgroups of G form a base of open 
neighbourhoods of 1.) 

For cardinals 2 and a let C(~r,2) stay for the set-theoretic assumption "there is a 
chain of length 2 in the power set P(a)  of a" (see [8], for other equivalent condition 
see [2]). It was shown in [8] that in case the group G is Abelian or free the existence 
of a chain of length 2 in M(G) is equivalent to C(21cb,2), so in particular does not 
depend on the algebraic properties of G but only on IGI. A generalization of this result 
for groups G satisfying [G/G'[ = [al was announced without proof in [10, Theorem II] 
(see also [7, Section 3.10.I]). 

The case of pseudocompact group topologies is substantially harder. The first restraint 
on the algebraic structure of infinite pseudocompact groups was found by van Douwen 
[42]. Namely, he showed that the cardinality of such a group should be at least c (the 
cardinality of continuum) and IG] cannot be a strong limit cardinal of countable co- 
finality. There was recently a substantial progress in the study of the class ~ of groups 
admitting pseudocompact group topologies [7, Section 3.10.B; 9; 11; 12; 20-23; 
38; 40]. This stimulated us to provide in the present paper various classes of groups 
(see ( i ) - ( iv)  below) with chains of pseudocompact group topologies of a given weight 

and show that these chains have the maximal possible length. 
Following [7, Notation 3.10.1(a)] we denote by ~3(a) the class of abstract groups 

admitting pseudocompact group topology of weight cr, i.e. with ~ ( G )  ¢ ~. By [13], 
G C ~(cr) yields 6(a) < IG] < 2 ~, where 6(o') is the Gr-density of {0, 1} ~ (see 
Section 1 for an equivalent definition in set-theoretic terms). We shall denote this 
condition by Ps(lGl, a). In Section 1 we provide all necessary facts concerning the 
condition Ps(v,~r) between two cardinals ~ and a. It turns out that G E ~ ( a )  can be 
described by means of this condition involving various cardinal invariants of the group 
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G, such as its cardinality, free rank r(G), the p-ranks ~(G), Ulm-Kaplansky invariants 
of G, etc. [23]. 

Our main result says: i f  G E ~3(a) then the poset ~ ( G )  contains a copy of  the 
Boolean algebra P(a) provided the group G has one of  the properties: (i) relatively 
free, (ii) torsion Abelian, (iii) Abelian with 6(log IGI) _< r(G) (in particular, IGI = 
r(G), or even, torsion-free Abelian); (iv) divisible Abelian (Theorems 2.3, 4.1, 5.1). 
Condition (iii) means that G admits connected pseudocompact group topologies of 
weight a (see Theorem 5.1). Of course, this yields a lot of lower bounds concerning 
the size of various poset-invariants of ~ ( G ) ,  maximum length of chains, width, height, 
depth, etc. For example, for a group G C ~3(a) of the above type ~o(G) has chains of 
length 2 if C(~r, ).) holds (so that ~ ( G )  has chains of length a+). Obviously, in such 
a case ~o(G) (as P(a))  has also antichains of size 2 ~. In this paper we shall consider 
only the chains. 

For a set X denote by P~(X) the family of all subsets of X of cardinality a. It 
follows easily from Tanaka-Krein duality for compact groups that for an arbitrary 
maximally almost periodic group G the poset ~ , ( G )  embeds into P~(X) (where X is 
the Tanaka dual of the Bohr compactification of G, see Fact 1.12). Hence every chain 
with top element (=bounded chain) in ~ ( G )  gives rise to a chain with the same 
size in P(a). Therefore the existence of a bounded chain of size 2 in ~ ( G )  implies 
C(a, 2). Conversely, our main result implies that in all cases (i)-(iv) mentioned above 
C(a, it) implies the existence of a bounded chain of size 2 in ~o(G), and hence ~ , (G) .  
This resolves completely the question in the case of bounded chains. 

In Section 6 we give all resuks concerning unbounded chains and we compare lengths 
of bounded and unbounded chains. Here we lean essentially on a general approach to 
precompact topologization developed in a forthcoming paper [3] and anticipated in [16, 
17]: for a group G close to being Abelian the poset ~o(G) is quasi-isomorphic to the 
poset p~(21Cl ) (see Theorem 6.1 ). This permits an easy calculation of the poset cardinal 
invariants of ~ ( G )  and yields further information on the poset structure of ~ ( G ) :  for 
example the existence of chains of length 2 in ~ ( G )  implies the existence of chains 
of length ). in the poset P~(a +). Under some additional set-theoretical assumptions (for 
example, the generalized continuum hypothesis, briefly GCH) this may yield C(a, A), 
so that unbounded chains "have the same length" as bounded ones (Theorem 6.3). In 
Theorem 6.4 we provide a sufficient condition for having the same chain lengths in 
~ ( G )  and ~ ( G )  (this holds also the under GCH, Theorem 6.3) and discuss its neces- 
sity under the singular cardinal hypothesis (SCH) in Remark 6.8. In Theorem 6.9 we 
prove that ZFC cannot decide whether bounded and unbounded chains in ~o~, (~) have 
the same length (its counterpart in the precompact case for ~o,(7/), was proved in [3]). 

In this paper we also answer several questions from [11, 12]. As already noted above, 
G E ~3(a) (i.e., ~ ( G )  ¢ 0) yields Ps(IGI,a ). The question of whether the converse 
is also true was raised in [12, Question 3.7]. Call a group G C ~3 a CR-group if 
Ps([G[,a) always implies ~ ( G )  ¢ 0. In these terms Question 3.7 from [12] sounds 

as follows: 



68 D. Dikranjan/Journal of Pure and Applied Algebra 124 (1998) 65-100 

0.1. Question. (a) Is every group G E ~ necessarily a CR-group? 
(b) Does a group G E ~ satisfy also G E ~( log  Ial)? 

Every CR-group G satisfies G E ~3(log IGI), since G E ~3 yields Ps(IG[, log IGI) [12, 
Lemma 3.4]. We show below (Corollary 4.6) that the divisible Abelian groups of  

cardinality > c have always the property (b) although they are not CR-groups in 

general (see Example 4.8 which answers negatively item (a) o f  Question 0.1 and 

we characterize the divisible Abelian CR-groups under GCH (Theorem 5.9). Since 

metrizable pseudocompact groups are compact, obviously a group G E ~ with IGI = c 

satisfies (b) iff G admits a compact metrizable topology. If  G is also Abelian, then G is 

a CR-group (Theorem 4.7). Now ~o~(G) need not contain P(og), actually I~o~(a)l = 1 

may happen (see Remark 5.2(c)). We show that among the groups G E ~3 with Ial > c 
there are several classes which consist of  CR-groups: the relatively free groups, torsion 
Abelian groups, torsion-free Abelian groups (more generally, Abelian groups G with 
r (G )  = [GI). 

1. Preliminaries 

1.1. Cardinal functions related to pseudocompact topologization 

The following purely set-theoretic condition Ps (z , a )  between infinite cardinals ~ and 
a was introduced in 1978 by Cater et al. [5]: the set {0, 1} ° o f  all functions from (a set 
of  cardinality) a to the two-point set {0, 1} contains a subset F of  cardinality z whose 

projection on every countable subproduct {0, 1} ~ is a surjection. The notation Ps (z , a )  
was adopted for the first time in [20, 21] (for a justification see Fact 1.1 below). 
In case P s ( r , a )  holds for infinite cardinals r and a we say that ~ is a-admissible 
and for a cardinal a >__ 09 we set 6(a)  = min{r : P s ( r , a )  holds} following [5]. 

Obviously Ps(z, a )  is equivalent to 6(a)  < z < 2 ~. An infinite cardinal ~ is admissible 
if it is a-admissible for some a, in such a case we set H ( r )  = s u p { a :  Ps(z,~r) 

holds}. 

The following fundamental fact explains the choice of  our notation Ps(z, a). 

1.1 Fact  (Comfort and Robertson [13]). I f G  E ~3(a) then Ps([GI ,a  ) holds; viceversa, 
/ f  Ps(z, cr) holds, then there exists G E ~3(a) with IGI = z. 

This fact implies that a cardinal r is admissible iff there exists a group G E ~ with 

[GI --- v. To see other related notions we need some more definitions and notation. 
The SCH is the set-theoretic assumption which ensures that r z < 2 z • ~+ for infinite 

cardinals z and )~ (so that an infinite cardinal ~ >__ ¢ having uncountable cofinality 

satisfies d ° = z; note that the converse is always true). It is known that GCH implies 

SCH, but the latter is much weaker [5, p. 310]. 

For an infinite cardinal z set logz  = min{~" 2 ~ >_ r} and 2 <~ = sup{2;~ : /l < z}. 
Note that 2 <~ is a proper limit iff log2 <~ = ~, i.e., 2 ~ < 2 <~ whenever 2 < z. The 
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cardinal z is a stron9 limit if 2 < z yields 2 ~ < z, or equivalently, 2 <~ = z = logz.  

Van Douwen [42] showed that the cardinality z of  an infinite pseudocompact group 
should be at least c and z cannot be a strong limit cardinal of  countable cofinality. We 
call a cardinal with this property a van Douwen cardinal. Clearly, admissible cardinals 

are van Douwen. The converse is true under SCH [42] (see also [23]). In Lemma 1.3 

below we show where can be located the nonadmissible van Douwen cardinals when 

SCH fails. 

Our next lemma recollects some basic results concerning Ps(~,a)  which will be 

needed for applications in the sequel. 

1.2. Lemma. (a) Let  a and z be infinite cardinals. 
(a l )  Ps (z , a )  implies c < z < 2 ~ and a < 2 ~, 
(a2) c f (6 (a ) )  > co, c < 6(a)  < 2 ~ and 6(a) > log a. 

(a3) a < a' implies 6(a) < 6(a'). 
(a4) 6(a)  < (log a)% 

(b) I f  r is admissible, then z is log z-admissible. 

(c) Let  f o r  i E 1 ai and zi be infinite cardinals such that Ps(zi ,a i)  holds f o r  

i E I. Then also Ps(min{zi : i E I } ,m in{a i  : i E I } )  and P s ( I ] { r i  : i E I } , sup{ai  : 
i E I} )  hold. In particular, i f I  i s f ini te ,  then Ps(max{zi : i E I } , m a x { a i :  i E I} )  

holds. 

ProoL (a) is proved in [5, Lemmas 1.1-1.5, Theorem 1.5] and (b) is proved in [12, 

Lemma 3.4]. 
To check (c) set zi, = min{zi: i c 1} and ai,, = min{o-i : i E I}.  If  i' = i" there 

is nothing to prove. Otherwise, ai, _> ai,,. Then ~ ( a i " )  <__ ~(a i , )  <__ zi, <~ zi,' <-- 2~ri" 
which proves Ps(zi, ,ai, ,) .  To prove the second part note that according to Fact 1.1, 

for each i E I there exists a pseudocompact group Gi of  weight o" i and cardinality 
zi. Then by Comfort-Ross '  theorem [15] I-[ Gi is a pseudocompact group of  weight 

tr = sup{a/: i E l } ,  thus Ps(l~{zi:  i E l } , a )  holds. [] 

Items (a2) and (a4) of  the lemma (namely, c f ( f ( a ) )  > ~o, 6(a) > c and log a < 
6(a) < ( l oga )  ~°) imply that 6(a) = ( l oga )  ~ under SCH. It is announced in [11, 12] 

that the set-theoretic assumption 

(M) 6(a)  = (log a)  ~ for all a > 09 

is proved to be strictly weaker than SCH by Masaveu [30]. As noted already in 
[5, Problem] (see also [13]), it is not known if (M) is a theorem in ZFC. 

We propose now a cardinal function useful when working without the assumption 

of  SCH. For z >_ ~o set x/~ = min{~ : ~ > z}, i.e. now p < v/~ for a cardinal p 

is an abbreviation of  pO~ <__ z. Obviously, x/ff < z+; with v ~  = z + iff z °' = z. Note 

that logz  <__ v ~,  equality holds iff ( logz)  °) > z. Clearly for every z >_ ¢ SCH yields 
x/z = z iff z °~ ¢ z iff cf(z)  = 09. By (b) (M) yields that a cardinal z is admissible iff 

( l og logz )  °~ _< z ([12, Theorem 3.8(b)]), i.e. l og logz  < x/~. Let us isolate this weaker 
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statements as: 

( W M )  every admissible z satisfies log log ~ < v/~. 

We do not know if  ( W M )  is strictly weaker than (M).  

1.3. Lemma. (WM) is equivalent to the fol lowing statement: 

(S)  For every strong limit cardinal 19 with cf(19) = o9 the open (possibly empty)  

interval (19, 0 °~) contains no admissible cardinals. 

Proof .  (S)  --~ ( W M )  If  l o g l o g z  = v ~  for an admissible cardinal r, then also l o g l o g r  

= log r = x/~, so that log z is a strong limit. Moreover,  log z = x/~ yields log z 

(log r )  °~, so that c f ( l o g z )  = o~. Moreover,  since z is a van Douwen cardinal and 

c f ( l o g r )  = ~o, we must have logz  < z < ( logQ°L This contradicts (S)  with 0 = logz.  

(WM) -~ (S)  For strong limit cardinal 0 with c f (0)  = co every cardinal T in the open 

interval (19,19~o) satisfies 19 = log r = log logz  = x/~ < z, hence cannot be admissible 

according to (WM).  [] 

In the equivalent form (S)  one can see how weaker is ( W M )  than SCH, where all 

open intervals (0, 0~°), with 0 > c and c f (0)  = o~, are imposed to be empty. We do 

not know the answer to the following. 

1.4. Question.  Is (S)  (or, equivalently, ( W M ) )  a theorem in ZFC? 

We note that by (a3) and (b)  o f  Lemma 1.2 the cardinals o ' s  such that an admissible 

cardinal r is a-admissible  form an interval with least element log r. Our next aim will 

be to compute the upper bound H ( z )  of  this interval. We give first a lemma to produce 

o-admissible  cardinals in ZFC. 

1.5. Lemma.  I f  a ~ < z <_ 2 ~ 

admissible f o r  each cardinal ~c 

also true, i.e. t fPs ( z ,~c )ho lds ,  

(i.e. a E [ logz,  x / ~ ) ) f o r  some a > co, then z is ~c- 

satisfying log ~ < K < 2 a. Under (M) the converse is 

then log r < ~c < 2 ~ f o r  some a E [log r, v~) .  

P r o o £  It follows from (a4) o f  Lemma 1.2 that 6(2 ~) < ( log(2a))  °~ < tr '° _< r, which 

obviously implies Ps(z,2~).  Since l ogz  < x < 2 a, it follows that P s ( z , x )  holds as 

well. 

Assume Ps(z,  x)  and (M) hold. Then take a = ~ in case r ~'~ = z. I f  ~ ¢ z, then 

60c) '~ = 6(x )  <__ ~, where the first equality follows from (M). Consider two cases. I f  

z < 26(~), a :=  6(x)  works, since x < 26(~). I f  26(~) <_ z, a : =  26(~) works, since 

x < 2 l°g(~) ~ 2 6(~) = a, so that a = a ~° < r < 2 ~ < 2 ~. [] 

As an easy corollary of  the above lemma one can see easily that i f  2 ~ < r < 22~ for 

some ~ _> co, then z is K-admissible for each cardinal x satisfying log z < 1< < 22~. In 
2 ~ fact, take in the above lemma 2 ~ instead o f  a to get Ps (z, 2 ) (this can be done since 

(2~) °' = 2 = ) .  
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1.6. Lemma. L e t  ~ be  a cardinal 

(a) I f  ~ is admissible and cf(z)  = co, then fI(z)  <_ 2<L I f  log2 <~ = ~, then 
Ps(z, 2 <z) fails. 

(b) I f  l og logz  < x/~ (i.e. ( l og logv )  ~ < z), then v is admissible and Fl(r) > 2 < ~  
>_z. 

Proof .  (a) Suppose P s ( z , a )  holds. Then cS(a) < v. Our assumption on ~ and (a2) give 
6(a) < r, so that a < 2 l°g~ < 2 ~t~) < 2<L Clearly, Ps(z ,2  <*) fails if  2 <~ is a proper 
limit. 

(b) Assume log logz  < v'ff. To prove that z is admissible and H(z)  > 2 <v7 it 
suffices to show (by item (a2) of  Lemma 1.2) that Ps(z,2P) holds for all sufficiently 
big cardinals p such that log log z < p < x/~. Since p°~ ___ r is ensured by our assumption 
P < x/if, in order to be able to apply the above lemma, we have to ensure that also 
z < 2 p holds in such a case. Consider two cases. 

Suppose first that log z = v/~ and pick a cardinal p such that log log z < p < x/~. 
Then our assumption entails (log z) ~° > z, thus 2P > 2 l°gt°gr = (21°gl°g~) ~ > (log zy  ° > 
~ > p ~ .  

Suppose now that log ~ < v/~ and pick a cardinal p with log ~ <__ p < v/~. Then 
2 p ___ 2 l°g~ > z > poe. 

To finish the proof  of  (b) note that our argument gives also 2 <v~ >__ z since we 
have proved that z < 2 p for all sufficiently big cardinals p with p < x/ft. [] 

1.7. Corollary.  Assume (WM). Then H(z)  > 2 <'/~ _ z for every admissible cardi- 
nal r. 

1.8. Question. Which of  the following is a theorem in ZFC? 
(a) H ( z )  >__ z for every admissible cardinal ~. 
(b) Fl(z)> logz for every admissible cardinal ~. 

Note that (a) yields (b). Indeed, in case ~ = log ~ is a strong limit, van Douwen ' s  
theorem gives c f ( r )  > co which in this case yields v = ~ with consequent Ps(z ,2  ' )  
and II(z)  = 2L 

1.9. Proposition. Assume (M). Then H ( v ) =  2 < v~ holds for any admissible cardinal 

~. Moreover, Ps(v,2  <'/~) fails iff log2 <vq = x/'~. 

Proof .  The inequality II(z)  >__ 2 <v~ follows from Corollary 1.7. To check the oppo- 

site inequality suppose Ps(z, a)  holds. Then c3(a) = 6 ( a y  ~ < z, the equality being a 
consequence of  (M). Hence 6(a)  < x/~. Then 6 < 2 ~(") < 2 <v5. This argument shows 
also that Ps(z ,2  <v/~) fails i f  2 <v~ is a proper limit. [] 

130.  Corollary.  Assume SCH and let r be an admissible cardinal 
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(a) I f  ~ = z then Ps(T,2 ~) holds, otherwise H ( r )  = 2<L Moreover, Ps(z,2 <~) 

fails iff log 2 < ~ = ~. 
(b) Ps(z ,U)fai ls  precisely when c f ( z ) =  co and log2 ~ = ~. 

Proof. (a) I f  ~ = z apply Lemma 1.5 with cr = ~ to get Ps(r,2~). In case T ~ ¢ z 

SCH implies v ~  = z. Now the above proposition applies. 

(b) Assume P s ( z , U )  fails. Then cf(z)  = co follows from (a). I f  p < ~, then 2 p < U,  
since otherwise Ps(z ,2  o) (and consequently also P s ( r , U ) )  would hold in view of  p _< 
p~O < p+ < z < 2 , < 2P and Lemma 1.5. This proves log 2 ~ > z, the other inequality is 

trivial. Now assume cf(z)  = e) and log2 ~ = z. Hence in case 2 <~ -- U,  Lemma 1.6(a) 
yields that Ps( r ,2  <~) fails, hence P s ( z , U )  fails as well. In case 2 <" < 2 ~ note that 

/ / ( z )  < 2 <~ by Lemma 1.6(a). Hence Ps(z,2 ~) fails again. [] 

1.2. Posets and their invariants 

Here we give some information on posets which will be used in the sequel. 

For a poset ( P , < )  a chain is a totally ordered subset cKC_P, cg is bounded if  (g 

has a top element, otherwise c£ is unbounded. By cofinality of  c~ we understand the 

least cardinality o f  a subset cg~ of  ~ such that for each c E cg there is c '  E oK' with 
C~__C t. 

In order to have a more precise language in discussing chain lengths into a poset 

(P, _<) define the following cardinal invariants 

Ded(P)  = min{2: there is no chain of  size 2 on P} 

and 

Dedb(P) = min{2: there is no bounded chain o f  size ). on P}. 

I f P  has a top element then obviously Ded(P)  = Dedb(P). We write briefly Ded(cr) for 
Ded(P(a) ) .  This cardinal function was introduced by Shelah in a different context [37], 

obviously Ded(a)  is the least cardinal 2 such that C(a,2) fails. 
q.i. 

Two partially ordered sets X and Y are quasi-isomorphic (X ~- Y in notation), if 

each one o f  them is isomorphic to a subset o f  the other [3, 16, 17]. Quasi-isomorphic 

posets obviously share a lot o f  common properties, such as monotone cardinal invari- 
ants, maximum size o f  well-ordered subsets, anti-well-ordered subsets, chains and anti- 
chains, etc. In particular for quasi-isomorphic posets P and Q we have Ded(P)  = 

q.i. 
Ded(Q) and Dedb(P) = Dedb(Q). Note that P~(~) ~ P~(~c') for some cardinals ~¢ and 

x'  iff ~c = ~c' [3, Corollary 2.4.]. 

1.11. Proposition. L e t  x,  ~c ~, a, a r, 2, )/ be cardinals. 
(1) I f  Cg is a chain of sets such that ICI ___ ~ for each C E ~, then I~el _< 2 ~. In 

particular, C(a,)~) implies 2 < 2 ~ [8, Proposition 1.10]. 
(2) Let a < a' and ,~ <_ 2, then C(a ,2 )  implies C(~rr,2 ' )  [2, Theorem 2.2(b)]. 
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(3) In Z FC  C(a,a+),  C(2~,2 (~÷)) and C(o),2 ~°) hold [2, 8]. 
(4) I f  a < ~c, then Ded(P~(~c)) = Ded(P~(a+)) [3, Lemma 4.2]. 
(5) Ded(a) _< Ded(P~(a +)) < Ded(a)+; more precisely, Ded(P~(a +)) = Ded(a) + 

t f fcf(Ded(a))  = a + [3, Theorem 6.10]. 

By (1) and (3) a + < Ded(a) _< (2°) +, so that under the assumption 2 ~ = ~r + (in 
particular, under GCH) C(a,2)  is equivalent to 2 <_ 2 ~ = a + (i.e. Ded(a) = (2~) + = 
or++). In general C(a,2 ~) may fail (i.e. Ded(a) = 2 ~ may occur). For an example with 
a = (nl, see [31]. It follows from (5) that Ded(P~(a+)) -- Ded(a) under GCH, but in 
general this equality cannot be determined in ZFC even for a = o91 [3, Corollary 5.7]. 

1.3. Topological 9roups 

We denote by N the naturals, by 7/the integers, by Q the rationals, by N the reals, 
by 7 = N/7/the circle group. We use r(G) to denote the free-rank of an Abelian group 
G and as usual denote by ~(G) the p-rank of G. For a discrete group G we denote 
by C ~ ( G )  (resp. ~ ( G ) )  the poset of connected (resp. zero-dimensional) topologies 
in ~ ( G )  and for a cardinal a we set ~ f ~ ( G )  = ~ ( G ) C ?  ~e~(G) and C ~ ( G )  = 

~ ( G )  M C~(G) .  Further, we denote by bc : G ~ G # the Bohr compactification of 
G; the group G is maximally almost periodic if bG is a monomorphism, i.e. M(G) 
(3 [43]. Clearly, ~ consists of maximally almost periodic groups. Following [16], for a 
maximally almost periodic group G we set 7(G) = min{a:M~(G) ¢ ~} and F(G) = 
sup{a: ~ ( G )  ¢ ~}. Now we introduce the counterpart of these invariants in the 
pseudocompact case. 

1.12. Definition. For a group G E ~ let 

~(G) = min{a: G E ~ (a )}  and /7(G) = sup{a: G E ~(a)} .  

In general 

log [GI _< 7(G) < n(G) < H(G) </-/(IGI) <_ r(G) <_ 2 Iol, 

and the equalities log Ial = y(G) = r t (a)  and II(G) = /7(161) obviously hold for a 
CR-group G (this shows that in the non-Abelian case CR-groups satisfy the stringent 
condition log IG I = 7(6) which may fail for a maximally almost periodic group G, ac- 
tually 7(G) may take all possible values between log IGI and Ial: [3,7.13; 16, p. 145]). 
In these terms Question 0.1(b) asks whether the equality log [G I = 7z(G) remains true 
for all groups G E ~3. We show that the answer is "yes" for the groups considered in 
this paper (relatively free and residually finite, torsion Abelian, torsion-free Abelian, 
divisible Abelian, etc.). On the other hand, we see in Section 5 that II(G) </7(IGI)  
(and actually, 2 tT(a) <__ /-/([GI) ) may occur (see Theorem 5.7). An easy modification 
of the proof of [3, Lemma 7.3(1)] shows that if n(G) < H(G), then G E ~ ( a )  for 
every a E [Ir(G),/7(G)). 
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1.13. Fact. For every group G there exist a set X and an order-isomorphism q~ 
of  ~ ( G )  into P(X), which sends ~ ( G )  into Pa(X). In particular, i f  G admits a 
chain with top element o f  2 precompact group topologies o f  weioht a, then C(a, ;~) 
holds. 

Proof. For the existence of ~p see [36, Theorem 2.3]. The last assertion is obvious. [] 

1.14. Remark. (a) In [36, Theorem 2.3] the set X is the Tanaka-Krein dual of the Bohr 
compactification G # of the discrete group G. Note that, in view of the monotonicity 
of  q~, Fact 1.13 yields w(G, T) <_ w(G, T') whenever T _< T' in ~ (G) .  

(b) Since the depth of Po(X) is ~r, Fact 1.13 yields immediately that ~ ( G )  cannot 
contain copies of  P(~c) for ~c > o-. 

(c) I f  ~ is an infinite cardinal such that : ~ ( G )  ¢ ~ for some group G, then log [G[ _< 
~r _< 2161. Actually, this inequality is true for any Hausdorff topological space G of 
weight ~r. 

(d) Boundedness of the chain is essential in Fact 1.13. In fact, it may happen that 
~ ( G )  or even ~@~(G) contain a chain of size 2 such that C(a, ).) does not hold (see 

Section 6). 
(e) Precompactness is essential in Fact 1.13. In fact, for G = ~)~ 7/(2) the poset of 

linear metrizable group topologies on G does not embed in any P~o(X) [3]. 

In the sequel we show that in many cases a copy of P(~r) is contained even in 
~o(G) or some subsets of  that poset. This will determine the possible lengths 2 of  

bounded chains in ~a(G),  namely, all )o < D e d b ( ~ ( G ) )  = Ded(cr). 
A topological space X is locally connected if for every point x E X each neighbour- 

hood of x contains an open neighbourhood of x with connected closure. For a group 
G we denote by CLC~(G)  the poset of connected and locally connected topologies in 

~ ( G )  and for a cardinal a we set CLCP~(G) = ~ ( G )  M CLCP(G). 
We introduce also the following notion of disconnectedness for topological groups. 

A topological group G is totally l-disconnected if the only locally connected subgroups 
of G are the discrete ones. In our outline we shall meet many connected and totally 
/-disconnected pseudocompact groups, so this will justify our attention to this property. 
It is easy to see, applying Pontryagin duality, that among metrizable compact Abelian 
groups the totally /-disconnected ones are precisely those which have no topological 

direct summand isomorphic to the circle group -Y. 
The following lemma is the first step towards constructing large sets of pseudocom- 

pact group topologies on a given group G. 

1.15. Lemma. Let G be a dense pseudocompact subgroup of  a compact 9roup K 
with w(K) = ~r. Assume that there exists a family jV  = {Ni :i E I} of  closed normal 

subgroups of  K which satisfy: 
(i) for each i E I G N Ni • {e}; 

(ii) for each i E I w(K/Ni) = ~r. 
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Let ~ be a topological property of pseudocompact groups preserved by taking 
dense subgroups. I f  K has 8 then ~ ( G )  contains a subset 3" anti-isomorphic to Jff 
consisting of topologies with the property o ~. 

Proof. For i E I denote by qgi the canonical homomorphism K --~ K/Ni. By (i) the 
restriction of ~oi on G is a monomorphism, thus qoi induces on G a coarser group 
topology ri, namely the topology induced o n  q)i(G) from the quotient K/Ni. By the 
property (ii) it follows that for each i E I vi is a group topology of weight cr. Moreover, 
~i < zi, whenever Ne C Ni. Therefore ~-- = {zi : i E I} is anti-isomorphic to ~P. 

Now assume that K has 8. Then each K/Ni has g. For each i E I (G, ri) is a dense 
pseudocompact subgroup of K/Ni, so has ~ as well. [] 

1.16. Lemma. Each of the following properties is preserved under taking dense 
pseudocompact subgroups: (a) connectedness; (a*) disconnectedness; (b) local connect- 
edness; (b*) non-local-conneetedness; (c) zero-dimensionality; (d) total l-disconnect- 
edness. Moreover, (a), (b) and (c) are preserved under products. 

Proof. (a*), (b*) and the last assertion are well known. For a pseudocompact group 
G the completion G coincides with the (~ech-Stone compactification fig of the group 
G [26]. This proves items (a) and (b). Finally, (c) and (d) are obvious. [] 

2. Relatively free groups 

By a variety of groups we mean, as usual, a class 2~ of groups closed under 
Cartesian products, subgroups and quotients (see [33] for further information). We 
call quasi-variety of groups a class ~ of groups closed under Cartesian products and 
subgroups. For a class of groups ~3 we denote by v a r ( ~ )  (resp. qvar(~8) the variety 
(resp. quasi-variety) generated by ~.  In case ~ = {H} we write simply va t (H)  or 
qvar(H).  We use 15 and 9~ for denoting the varieties of all groups and all Abelian 
groups, respectively. Every quasi variety ~3 determines a reflector p~ : 15 -~ ~3, i.e. 
an endofunctor p~ : 15 ~ 15 such that for every G E 15 there exists a surjective 
homomorphism p~ • G --~ p~(G) E ~ with the obvious universal property (just take 
the quotient homomorphism with kernel the intersection of all kernels of homomor- 

phisms G ~ G1 E ~3). 
Let ~ be a variety. The YS-free group of ~ generators, denoted by F,(~3), is a group 

G E 2~ having a set X of z generators such that every map f :X ---+ H E ~ can by 
uniquely extended to a homomorphism f ' G  --~ H. For ~ = (5 we write simply F, 
instead of F,(15). In the general case, one can take as F,(~3) the group p~(F~). A 
group G is relatively free if  G is var(G)-free. 

In this section we show, roughly speaking, that lengths of  chains with top element 
of pseudocompact topologies of weight a on a free Abelian groups are the same as 
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the lengths of chains in P(a).  More precisely, for an arbitrary variety ~ of groups we 
completely solve the following problem: When does the ~-free group F~(~8) admit a 
chain, with top element and length 2, of pseudocompact group topologies of weight 
a? We consider a property of a variety ~ (see Definition 2.1 below) which turns 
out to be necessary for the positive solution of this problem for some cardinals z 
and ~. [23, Theorem 5.5]. On the other hand, if this necessary condition holds for ~,  
then the answer to the question depends only on the purely set-theoretic properties 
Ps(z ,a)  and C(a, 2). In the case ~B E {ffi, 9.I} this condition is satisfied, and F~(~) 
admits long chains with top element of pseudocompact connected and locally connected 
group topologies of weight a whenever Ps(z, a) holds. 

For a variety ~ let F1,F2 . . . .  ,Fn . . . .  be a full list of pairwise nonisomorphic finite 
groups of 5B. The infinite group K~ = l-[n~=l F,  E ~B will always be equipped with the 
product topology of the discrete topologies on each Fn. Note that the topology of K~ 
is compact, metrizable and linear, in particular, zero-dimensional. Set ~ f  := var(K~). 

2.1. Definition. A variety ~ is precompact if  2~ = 23 f ,  i.e. ~3 is generated by its finite 
groups. 

A group G is residually finite if  the intersection of all its normal subgroups of finite 
index is trivial, or equivalently, if G is isomorphic to a subgroup of a Cartesian product 
of finite groups [33, 17.71-17.73]. Hence every residually finite group is maximally 
almost periodic. It turns out that for a relatively free group G these two properties are 
equivalent. In fact, if a variety ~3 is precompact, then every U-free group is isomor- 
phic to a subgroup of a power of K~, hence admits a precompact zero-dimensional 
group topology (this need not be true for all groups of ~,  see Remark 2.8(c) and 
Remark 3.5(b), (c)). Conversely, these are precisely the varieties 2~ for which every 
finitely generated ~3-free group admits precompact group topology. Hence, a variety 

is precompact iff ~ is generated by its compact groups. For a proof of these facts 
see [16] or [23]. 

The varieties ~ and 9.I as well as many of the known varieties are precompact (nilpo- 
tent groups, polynilpotent groups, soluble groups, in particular, metabelian groups). 
Nonprecompact varieties are not easy to come by, in fact, for prime p > 665 the 
Burnside variety ~3p (consisting of all groups satisfying the identity x p = 1) is not 
precompact [16]. The proof is based on the negative solution of Burnside's prob- 
lem [33], the positive solution of the restricted Burnside's problem [47] and the 
fact that bounded torsion subgroups of finite-dimensional unitary groups are finite. In 
particular: 

~3, is precompact iff Burnside's problem for  n has a positive solution. 

Consequently, the varieties ~2, ~33, ~4 and ~6 are precompact. 
It was proved in [23] that for a precompact variety ~ and cardinals z and a >_ o~l 

given the group F~(~) admits a pseudocompact group topology of weight a iff Ps(z, a)  
holds. The following lemma turns out to be fundamental for our approach to chains of 
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pseudocompact topologies on groups. Only the part in parenthesis will be used in this 
paper, we give the other version only for the sake of completeness. 

2.2. Lemma. Let  ~ be a precompact variety o f  groups, let H be an infinite compact 

metrizable group generating fB and let L C ~ be a compact group o f  weight < o. 

Suppose that z and o >_ 031 are cardinals, such that logo < z < 2 a (resp. Ps(z,o))  
hold. Then there exist a dense (pseudocompact) ~B-free subgroup F = F~(fB) o f  

H a X L and a fami ly  JV = {Ni : i E 1} o f  closed normal subgroups o f H  a x L which 

satisfy 

(i) F NNi : {e}; 
(ii) each Ni is a topological direct summand o f  H a x L; 

(iii) f o r  each i E I  (H a x L ) / N i ~ H  a x L  and Ni~-H a, in particular w ( H  a x L / N i ) = o ;  

(iv) the fami ly  ~,V = {Ni: i E I}  is order-isomorphic to P(o). 

Proof. Assume Ps(z,o)  holds. According to [23, Lemma 4.3] (see also [21]) and 
[23, Remark 9.15] there exist an 03-dense 2~-free subgroup F of H a x L  with IF I = z and 
a set C C o such that ]CI = I o\CI = o and F C~ H c = {e}, where H c= {h ~ H a : h(e)  = e 

for all e E ~r\C} and e is the neutral element of H. This will do for the proof 
of the part in parenthesis. For the other part one can prove analogously, by substi- 
tuting in the proof of [23, Lemma 4.3], wherever necessary, the condition Ps(v, cr) 
by logo _< z _< 2 a and projections on countable subproducts H A by projections on 
finite subproducts the existence of a dense ~3-independent subset X with the same 

properties. 
Now fix a subset B of C with I C \ B [  = [B I = o and set ND = H  D for B C D C C .  

Then obviously the family ~"  = {No" B C D C C} of closed normal subgroups of H a 
satisfies F AND = {e}, i.e. (i) holds. Further, the family Jff is order-isomorphic to 
P ( C \ B )  = P(o)  with respect to the inclusion, i.e. (iv) holds with I = {D: B CD  C C}. 
By the choice of C and B (H a x L)/ND ~- H a\D x L ~ H a x L and ND -~ H a, so (iii) 
holds. Finally, (ii) follows directly form the definition of ND. [] 

The equivalence of items (iv) and (v) in the following theorem was proved in [20] 

and [23, Theorem 5.6]. 

2.3. Theorem. Let  ~ be a precompact variety and let T and o > o31 be cardinals. 

Then the following conditions are equivalent for  the U-free group G = F~(fB). 

(i) the poset ~ a ( G )  conta&s a copy o f  the Boolean algebra P(a);  
(ii) ~a(G) contains a copy o f  the Boolean algebra P(o); 

(iii) Dedb(~a(G)) _> Ded(o) (i.e. ~a (G)  contains a bounded chain o f  length )~ for  

each 2 satisfying C(o, 2)); 
(iii*) Dedb(~a(G)) = Ded(a); 

(iv) :~a(G) ¢ O; 
(v) Ps(~,a) holds. 
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In case ~ = 9.1 or fB = 15 these conditions are equivalent to the .following: 

(vi) ~ ( G )  contains a copy o f  the Boolean algebra P(~r) consisting o f  topologies 

with one o f  the following three properties: connected and locally connected, discon- 

nected and locally connected, connected and nonlocally-connected. 

Proofl The implications (i) ==> (ii) ~ (iii) ~ (iii*) ~ (iv) and (vi) ~ (ii) are 

obvious. The implication (iv) =~ (v) follows from Fact 1.1. The implication (iii) =~ 

(iii*) follows from Fact 1.13. To finish the proof we have to prove the implication (v) 

=~ (i) and the implication (v) ~ (vi) in the case ~9 = 9,1 or ~9 = 15. 

By the precompactness condition the variety ~ is generated by a compact group 
H E ~9, which may be assumed zero-dimensional if necessary. 

Assume Ps(z, cr) holds, then by Lemma 2.2 (applied with L = {0}) there exists 
a family ~ = {Ni : i  E I}  of  closed normal subgroups o f  H ° which satisfy condi- 
tions (i) and (ii) from Lemma 1.15. Since H was assumed zero-dimensional and zero- 

dimensionality is a property preserved by taking arbitrary subgroups and products, the 

power H"  is zero-dimensional. We can apply now for this property Lemma 1.15 to 
get a family {zi: i E 1} TM P(~r) of  zero-dimensional pseudocompact group topologies 

of  weight a on G. This proves the implication (v)=~ (i). 
Now consider the case ~ = 9,I or t5. It is known that both varieties are gener- 

ated by connected and locally connected groups H.  For 9,I take H = q]-, for 15 take 

for example the orthogonal group SO(3, I~) [I]. Note that each of  the following four 

properties of  pseudocompact topological groups: connectedness, disconnectedness, local 

connectedness and nonlocal connectedness are preserved by taking dense pseudocom- 
pact subgroups according to Lemma 1.16. Moreover, both connectedness and local 
connectedness are preserved by products. Thus in both cases considered the groups 
H ~ may be chosen to be both connected and locally connected. Apply now for this 

property Lemma 1.15 to get a family { r  i : i E I}  ~ P ( a )  o f  connected and locally 
connected pseudocompact group topologies o f  weight a on G. For the case d ~ is the 

property "disconnected and locally-connected" take a finite nontrivial group L in ~3 and 

instead of  H ° take the group H ° x L. Now apply Lemma 2.2 to this data to get a family 
~,U = {Ni : i E I}  of  subgroups of  H ~ x L satisfying conditions ( i ) - ( iv )  o f  Lemma 2.2. 

Note that now H ~ x L is disconnected and locally connected, so that by virtue of  the 
isomorphism (iii) in Lemma 2.2 also the quotient group H ~ x L/Ni TM H ~ x L has the 

same property. An application of  (the proof of) Lemma 1.15 to the family ~V" will pro- 

duce a family {~i:i E 1} ~ P ( a )  o f  disconnected and locally connected pseudocompact 

group topologies o f  weight cr on G. 
Let now ~ be the property "connected and nonlocally-connected". To be in position 

to apply again Lemma 1.15 we need to choose H to have the same property. Let 

D = Q* be Pontryagin dual o f  the rationals. Then D is a compact connected (hence 

divisible) metrizable Abelian group which is not locally connected [19, Chapter 3]. 

"Now take H = SO(3,•)  x D  in the case ~9 = 15, and take H = D in case ~ = ~I. [] 
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2.4. Corollary.  Let ~ be a precompact variety. Then for cardinals z, 2 and a > col 
given, the following conditions are equivalent: 

(i) Ps(r ,  cr) and C(o' ,2) hold; 

(ii) F~(~3) admits a chain of  length 2, with both bottom and top elements, o f  
pseudocompact zero-dimensional group topologies of  weight a; 

(iii) F~ (~ )  admits a chain o f  length 2 with top element of  precompact group 
topologies of  weight ~ and P s ( r , a )  holds. 

Moreover, in case ~3 = 9J or 15 these conditions are equivalent to the following: 

(iv) F ~ ( ~ )  admits a chain of  length 2, with both bottom and top elements, of  
pseudocompact connected and locally connected group topologies of  weight a. 

Proof.  The implications (i) ~ (ii) and, in case ~3 = N or (5, (i) ~ (iv) are trivial 
applications of  Theorem 2.3. The implication (ii) ~ (iii) follows from Fact 1.1. The 
implications (iii) ~ (i) and, in case ~9 = 9.I or 15, (iv) ~ (i) follow from Fact 1.13. 

[] 

2.5. Remark .  (a) In case F~(~3) admits an arbitrary chain (i.e. without the assumption 
of  boundedness) of  precompact group topologies of  weight cr and Ps(v, ~r) holds, then 
all we can get from this is that 2 _< 2 ~ (by Fact 1.13 and Proposition 1.11). More 
precisely, one can show that there exists a chain of  length 2 in P~(a+)  which is a less 
stringent condition than C(~r,2) (see Proposition 1.11(5) and Theorem 6.3). 

(b) The restraint ~9 -- 9.1 or t5 for the validity of  the implication (i) ~ (iv) is 
necessary - it is proved in [23] that if  F~ (~ )  admits a pseudocompact connected 
group topology then either 2~ = 9.1 or 2~ = 15. 

Now we can answer Question 0.1 in the case of  relatively free groups. 

2.6. Corollary.  Every relatively free group in ~ of  cardinality > ¢ is a CR-group. 

It follows from Lemma 1.2(b) that i f  Ps (z, ~r) holds for some a then also Ps(z, log z) 
holds. Thus according to the above corollary, i f  ,¢~(G) # 0 for a relatively free group 

G with IGI > c, then also ~loglal(G) 7~ ~ (i.e. 7r(G) = log[G[)  as in the case of  
precompact topologies. 

Now we give an example of  a free Abelian group to show that as far as pseudocom- 
pactness is concerned the maximal weight 2 CGI need not be attained, i.e. ~21~l (G)  = 0 
(even FI(G) + = 2 fGE) may occur while ~ ( G )  ¢ 0 and M21~I(G) # 0. 

2.7. Example .  Let G = 7/(°~'°). There is a model, 93l of  ZFC such that: 
(i) for each n E N + the group G has a pseudocompact group topology of  weight 

2 '~° in 9)~, hence H(G) > 2 <1~1 (actually, II(G) + = 21Gl); 

(ii) G has pseudocompact group topologies of  weight neither 2 IGI nor sup2 ~" in 
931, thus / / ( G ) =  2 <IcL. 
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According to Easton's theorem [25] there exists a model 991 of  ZFC such that the 

following rules of  cardinal arithmetic hold in 9J/: 

2 ¢'," = (-ore+n, 2 °'°'+" = coo,+~o+n, 2 °'''-'~+° = ~o~.~+,o+~+1 for every n E N +, 

2 ° ' '  ---- cooaq-eo--1, 2 °) ....... = o)~,~+,o+e,+l, 2 ~ = rc + for every K > coo,+~+~o. 

Note that the model 93l satisfies SCH, so that cf(IGI)  = co and 2 <fGI = co~,~+~o (a 

proper limit) yield H(IGI) = 2 <IGI by Corollary 1.10. Hence for each n E N+ the car- 
dinal ]G I = coco is 2 ~°° = ~o~,~+~-admissible in 9J[ (this proves (i)), while Ps(IGI,2 <IGI) 

fails so that [G[ is neither co~+,.~-admissible, nor 21Gh-admissible (this proves (ii)). [] 

2.8. Remark.  (a) The above example shows that in the model 9)l the subset ~ ( G )  o f  
,~(G) is not closed even under countable directed suprema. In fact, let for each n E N 

Tn¢  ,~,,~+°(G). Then eg~o+,o = sup{2 ~'~ :n ~ N} yields T = sup{Tn} E ~ ...... (G), while 
(ii) says that ~o, ....... (G) = 0. Hence T is not pseudocompact. It was kindly pointed out 

by the referee that an increasing sequence of  pseudocompact group topologies on 2~ (c) 
such that the supremum of  this sequence is not pseudocompact has been produced by 

Tkaeenko [39, Example 4.2] in ZFC. 
(b) In the above example the group G can be taken any Abelian CR-group, for 

example G which satisfies [G I = r(G) (see Corollary 3.4) or G = F (~'~), where F is a 

finite Abelian group (see Example 4.6(b); G can be also a tame bounded p-group as 

defined in the proof of  Theorem 4.1 ). 
(c) The following example shows the importance o f  relative freeness in 2.3 and 2.4. 

Let F be a finite simple non-Abelian group and ~ = var(F) .  Then ~ is precompact, so 
that by Theorem 2.3 the ~3-free groups of  admissible cardinality admit zero-dimensional 

pseudocompact group topologies, but the group G = ( ~ F  admits pseudocompact 

group topologies for no infinite ~. In fact, M(G) = {TT}, where TU is the product 
topology of  G (see [3, Example 7.13]. Since G is not Ge-dense in its Tf-completion 

F ~, Tf is not pseudocompact. 

3. Precompact varieties with injective compact generator 

3.1. Definition. Let 2~ be a variety of  groups and H E 2~. We say that H is 2~-injective 

if for every G E ~ every homomorphism f : G1 ~ H,  where G1 is a subgroup of  G, 

has an extension f : G --~ H.  

3.2. Proposition. Let ~ be a variety o f  Abelian groups. Then: 

(a) There exists an infinite compact metrizable ~-injective generator H o f  ~. 

(b) Let H be as in (a), let ~r > ~1 be a cardinal and let G E ~ contain a U-free 

subgroup F with Ps(IF  I, a). Then the following are equivalent: 
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(b l )  IGI <__ 2 ~ and for  each prime p E P rp(G) > 0 yields rp(H) > 0 (i.e. G E 
qvar (H) ) ,  

(b2) there exist a dense pseudocompact subgroup Gl o f  H ~ isomorphic to G and a 

fami ly  JV" = {Ni : i E I}  o f  closed topological direct summands o f  H ~ which satisfy 

G1 M Ni = {e}, w(H~/Ni)  = a for  each i E I and Jff is order-isomorphic to P(a) .  

Both (b l )  and (b2) yield P ( a )  ~ ~ ( G ) .  

ProoL (a) Let us note first of  all that the variety 59 is precompact.  Hence there exists 

an infinite compact metrizable group H generating 59. Set now 93n --- ~3n N 93 and 

note that either 59 = 9.I or 59 = 93n for some n E N. In the case 59 = 93 we can 

take H = T. Being divisible this group is also injective in 93. In the case 59 = 93~ 

for some n E N take H = 2~(n) °'. To see that this is an injective object of  93n it 

suffices to check that the group 2~(n) is an injective object of  93n. Let G E 93, and 

let f : G1 ~ Z(n)  be a homomorphism, where Gl is a subgroup o f  G. It suffices to 

extend f to any subgroup G2 = G1 + (x) of  G with x ~ G1 and then apply trans- 

finite induction. I f  the sum is direct we are through. Assume that Gl N (x} = (kx} 

for some k E N with kx  ~ O. It is not restrictive to assume that 1 < k < n and 

k is a divisor of  n. Let n = /on, Since nx = 0, the order o f  the element kx  E Gl 

is a divisor o f  m. Thus m f ( k x )  = 0 in 7/(n). Since Z(n)[m] = k7/(n) there ex- 

ists a E 2~(n) such that f ( k x )  = ka. Now set f ( x )  = a and extend f to G2 by 

linearity. 

To prove (b) note that the implication (b2) ~ (b l )  is trivial. We proceed now with 

the proof  of  the implication (b l )  ~ (b2). According to Lemma 2.2 there exists a dense 

pseudocompact  59-free subgroup F t of  H "  with IF '  I = IFI and a family JI'~ = {Ni : 

i E I}  o f  closed subgroups of  H ~ which satisfy conditions ( i ) - ( i v )  from Lemma 2.2. 

Let T denote the top element of  the family ~¢'. In particular, we have 

F ' n  r = {0}. (1) 

We intend to "extend" the inclusion of  F t into H ~ to an embedding ~ : G --~ H a 

such that for G1 = .~(G) the equality G I N  T = {0} holds. Then obviously also 

G1 N Ni = {0} will be satisfied for i E I .  Let To be the bottom element of  the family 

~U. Then T = To × 7'1, where To ~ T1 ------- H ~ by (iii)  of  Lemma 2.2. 

Set L - F ~ + To and note that this sum is direct by (1). Let us prove that (by the 

modular  law applied to the lattice of  all subgroups of  the group H ~) 

L M T~ = {0}. (2)  

In fact, i f x  = f + t E 7"1ML, f E F',  t E To, then f = x - t E F '  N ( To + T1). By (1) 

this yields f = x - t = 0 and consequently x = t E To Yl T1 = {0}. Hence x = 0. This 

proves (2). Now fix an isomorphism j : F --~ F '  between the 59-free groups F and F ' .  

In case 59 = 93 consider also a free subgroup F c  of  G such that F N F c  = {0} and 

such that G / ( F + F c )  is torsion. In case 5B ¢ 93 set F c  = 0. By [Fat <__ IG[ <_ 2 ~ there 

exists a monomorphism d : FG ~ To. With /~ = F + F r ,  in both cases the subgroup 
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G' = F + s(G)  is an essential subgroup of  G (i.e. nontrivially meets every nontrivial 
subgroup of  G). Moreover, the sum 3 = j + d : /~ --+ L is a monomorphism in view 
of  (1) and the choice of  the homomorphism d. 

Assume 5o(G) > 0 for some p E ~z. The subgroup F [ p ]  splits off in G[p], i.e. 
G[p] = F [ p ]  ® Sp (in case 23 = ~I, F [ p ]  = 0 thus Sp = G[p]) .  By hypothesis also 
5,(H) > 0. By [G I < 2 ~ it follows that ~ ( G )  _< 2 °. Thus there exists a monomorphism 
ip : Sp ---+ sp(To) -~ sp(H ~) = sp(H) ~. Note that the sum j p  = ~ I/~[p] -[-ip : G[p] = 

• ~ [ p ] O S p  ~ H ~ is a monomorphism for each p E P (if  ~9 --- ~ ,  then F [ p ]  = 
0; otherwise P = F,  so that j ( P )  -- F '  and (1) applies). Therefore, there exists a 
monomorphism j '  : s(G) ~ L ~ which extends the restriction 3 I~(,~) : s(/~) ~ H ~- Let 

j "  : G' = P + s (G)  ~ H a be the sum of  3 and j ' .  For each nonzero x E P + s(G)  

there exists k E ~ such that y = kx  ¢ 0 and either y E P or y E s(G).  In both 
cases j " ( y )  ¢ O, so that jr ' (x)  ¢ 0 as well. Since H ~ is 23-injective, there exists an 
extension j : G ~ H ~ of  j " .  Then also ~ is a monomorphism since G ~ is an essential 
subgroup of  G. By ~ ( G ' ) C L  and (2) we get ~(G')  n / ' 1  = {0}. Since ~(Gl)  is an 
essential subgroup of  G1 this yields G1 M Tl = {0}. 

To finish the proof  assume that (b2) holds. Then the hypotheses of  Lemma 1.14 are 
satisfied. This gives the desired embedding P(G) ~ ~ ( G ) .  [] 

3.3. Theorem. Let  23 be a variety o f  Abelian groups, let a > ~o and let G E 23 with 

IG] <_ 2 °. I f  G has a 23-free subgroup F with Ps( IF] ,~  ), then P(cr) ~ ~'~(G). I f  

23 = 9J, then P ( a )  ~ C L C ~ ( G ) .  

Proof.  Note first that the injective compact generator H as in (a) o f  Proposition 3.2 
can be chosen in such a way to satisfy also 9J = qvar(H).  For 23 = 9J and H = T and 
H = 7/(n) for 23 = 9Jn it follows from the simple fact that 23 = v a r ( H )  = qvar(H) .  
Now we can apply Proposition 3.2 to our group G to get the desired embedding 
P ( a )  ¢-~ 5~(G) .  For 23 = 9.i it suffices to observe that H -- 1]- is connected and 
locally connected. It follows from Lemma 1.16 that also T~ has the same properties. 
Moreover, both properties are preserved by taking dense pseudocompact subgroups and 
topological direct summands according to Lemma 1.16. At this point we are in posi- 
tion to apply Lemma 1.15 to the group G, the compact group T ~, the family ~ of  
subgroups of  T a produced in the proof  of  Proposition 3.2 and the property "connected 
and locally connected". This will produce a family of  connected and locally con- 

nected topologies J-- in ~ a ( G )  anti-isomorphic to ~U. By property (iv) o f  Lemma 2.2 
the family ~,'~'~ is isomorphic to P(~) ,  then also the family Y will be isomorphic 

to P(a ) .  [] 

3.4. Corollary.  Let  G E ~ be an Abelian group with r (G)  = IG[. Then P(~)  
C L C ~ ( G )  for  each uncountable cardinal ~r with Ps(IG],¢7 ). In particular, G is a 

CR-group whenever [G I > c. 
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ProoL Set z = IG] and assume that P s ( z , a )  holds for some cardinal ~r > co. This gives 
_< 2 ~. By our hypothesis we can find a free subgroup F of  G with IF[ = z. Then 

we can apply Theorem 3.3 with ~9 = 9.i, G and F to claim that P(~r) ~ C L C ~ ( G ) ,  
in particular, . ~ ( G )  ¢ 0. I f  IGI > ¢, then all cr with Ps(z,~r) must be uncountable. [] 

The above results is a purely Abelian phenomenon. Here we propose a comment  for 
the non-Abelian case. 

3.5. Remark .  (a) To be able to transfer the argument of  Proposition 3.2 and Theo- 
rem 3.3 in the non-Abelian case we need the following notion: for a variety ~ a group 
H E ~9 is a cogenerator of ~9 if every group of  ~ is a subgroup of  some power of  
H.  Clearly, H is a cogenerator of  ~9 iff ~9 coincides with the quasi-variety qva r (H)  
generated by H (or equivalently, for every G E 2~ and g E G, 9 ¢ 1, there should 
exist a homomorphisms f : G --+ H with f ( g )  ~: 1 ). Clearly a ~-injective generator 
H of  ~9 is also a cogenerator if  H contains a copy of  any cyclic simple group in 2~. 
This occurs when ~9 C_ ~3n (see Theorem 3.6 and Claim 3.7). 

(b) Every group of  a variety ~3 with compact cogenerator is maximally almost 
periodic. Conversely, if all groups of  a variety ~9 are maximally almost periodic, then 
2~ has a compact cogenerator. In fact, 2~ is obviously cogenerated by its compact 
groups. Since ~3 ¢ 9.1 (see item (c)), the non-Abelian compact Lie groups of  ~ are 
finite. Hence K ~  × K is a compact cogenerator of  ~ ,  where K is a compact cogenerator 
of  ~3 N 9A, i.e. K = q]- if  9,1 C_ ~3 and K = Z(n)  if  ~9 n 9.I = ~n.  

(c) By (b) a variety 2q with compact cogenerator is precompact. There is a lot of  
precompact varieties ~3 which do not have a compact cogenerator, i.e. contain a non- 
maximally almost periodic group. For (fi one can take the group SL2(C) which admit 
no nontrivial homomorphism into a compact group. Actually, every variety containing 
the variety ~]'~2 of  nilpotent groups of  class 2 will do. In fact, there exists G C 912 
such that the kernel R of  the Bohr compactification bG : G --~ G # of  G is the commu- 
tator subgroup G / = [G, G] of  G (note that always R C_ G / since the quotient GIG r is 
Abelian, thus maximally almost periodic). Two examples to this effect can be found 
in [44], Example 5.10 is a p-group of  exponent p, where p may be any odd prime, 

while Example 5.11 is torsion-free. 
(d) The variety (fi admits no cogenerator at all. In fact, such a cogenerator should 

contain an isomorphic image of  each simple group, but this is impossible since there 

are arbitrarily large simple groups (see also Theorem 3.6). 

We have shown above (Proposition 3.2(a) and the proof  of  Theorem 3.3) that every 
Abelian variety 2~ has a ~9-injective compact cogenerator. The next theorem gives some 
restraints on varieties having this property. The following fact will be needed in the 

proof  of  the theorem: 

Claim. A ~-injective generator H o f  a variety 2~ is also a cogenerator o f  2~ iff 
N 96 C_C_ qvar(H) ,  i.e. H contains a copy o f  any cyclic simple group in 2~. 
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Proof.  Follows directly from the definitions. [] 

3.6. Theorem. Let 21 be a variety which has a 21-injective compact 9enerator H. 
Then: 

(a) either 21 = 9.1 or ~ C_ 21 C_ ~B [ for  some n; 

(b) / f  9.I~ C_ 21 C_ ~3 f then H is also a cogenerator o f  21; 

(c) for  every simple non-Abelian 9roup S E 21 all Abelian subgroups o r S  are cyclic 

o f  prime order (in particular, 21 contains no finite simple non-Abelian groups). 

ProoL (a) Let H be a 21-injective compact generator o f  21. Assume 7/ C 21, i.e. 

9.I C 21. Then H is divisible, hence connected. Therefore either 21 -- 9~, or 21 = 15 

by [23, Theorem 3.25]. Let us see that the second case cannot occur. In fact, if H were 

non-Abelian, then the connected group H would contain a compact subgroup L which 

is a simple Lie group. In particular, L has few automorphisms. On the other hand, L 

contains a free subgroup F isomorphic to Fc (cf. [1]) which has 2 ¢ automorphisms. 

Hence some of  them cannot be extended to homomorphisms L ~ H. This proves 
that 21 ~ 15. (An altemative proof is possible by showing that 15 has no 15-injective 

groups.) Therefore we have 21 -- 9~ in this case. 
Now assume that 7/ ~ 21. Then 21 C_ ~n for some n. Since 21 is generated by its 

compact groups, we have actually 21 ___ ~Y. Choose n to be minimal with this property. 
Then Z(n) C 21, since otherwise there would be a proper divisor d o f  n such that 

21 C_ ~3d and consequently 21 c_ 21d f for 21 is generated by its compact groups - in 

contradiction with the choice of  n. Hence 7/(n) C 21 and consequently, 9.1, C_ 21. 
(b) To show that H is a cogenerator of  21 we make recourse to the above Claim, 

so that it suffices to show that H contains a copy of  any cyclic simple group in 21. In 

fact, suppose C E 21 is a cyclic group of  order p. Then it suffices to see that p must 

divide the period of  some element of  H.  Assume not. Then for m = n/(n, p"), where 
(n, p~) is the GCD of  n and pn, all elements o f  H have period which divide m, i.e., 

H E ~m. Then H cannot generate 21 - a contradiction. Hence H contains a subgroup 

isomorphic to C. 
(c) The case 21 ---- 9.I is trivial, hence we assume from now on that 9A, ___ 21 C_ ~3 f .  

Now let S E 21 is a simple non-Abelian group and assume that A is a nonsimple 
Abelian subgroup of  S. Then A (or an appropriate subgroup of  A) admits a nontrivial 

quotient f : A --~ A1 with non-trivial N -- k e r f  and Al cyclic of  prime order. By (b) 
H is also a cogenerator of  21, thus there exists a nontrivial homomorphism ~p " A1 ~ H. 

Now the composition q~ o f • A ~ H admits an extension 7 " S ---, H. Then ker f will 
be a proper normal subgroup of  S by the equality ker f nA = N ~ 1 - a contradiction. 

To finish the proof o f  (c) note that a finite simple non-Abelian group always contains 

Abelian subgroups which are not simple. [] 

3.7. Remark.  (a) The above theorem restricts strongly the varieties 21 which have a 

21-injective compact generator. For example, none of  the varieties ~36f0, has a 216f0n - 
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injective generator (note that ~3 f contains a finite group S iff ISI/n). Here, of  course, 

60 = IAsl can be replaced by any other cardinality of  a finite simple non-Abelian group. 
This examples leave open the question if ~3f,, may have a 23f,-injective generator, 

since now all groups of  ~3f, are nilpotent. We do not know even whether all groups 
of  this variety are maximally almost periodic. 

(b) We cannot claim in (b) of  Theorem 3.6 that H is a cogenerator o f  23 also 
when 23 = 9.I, in fact now any compact divisible torsion-free group H may serve 
as a counter-example. Anyway, the variety 9.I has a compact 9.I-injective cogenerator, 
namely ~-. 

(c) Item (c) of  Theorem 3.6 does not eliminate all simple groups in 23. In fact, 
there exist infinite simple groups in which all proper subgroups are cyclic of  a fixed 
order p (the so called Tarski monsters). 

3.8. Question. (a) Let 23 be a precompact variety which has a 23-injective cogen- 
erator. Must 23 have also a 23-injective compact generator (or, at least, a compact 
cogenerator)? 

(b) Let 23 be a variety which has compact cogenerator. Must 23 have also a 
23-injective compact generator? 

(c) Let 23 be a variety which has 23-injective compact generator. Is 23 necessarily 
contained in 9.1? 

A negative answer to (c) will justify the following: 

3.9. Problem. Find appropriate versions of  3.2-3.4 for varieties 23 with 23-injective 
compact generator. 

4. Chains of pseudocompact topologies on torsion Abelian groups 

Since pseudocompact torsion Abelian groups are bounded by [14, 7.4], in this section 
we restrict ourselves to considering only bounded torsion groups. 

Let G be a bounded torsion Abelian group. 
(i) For each p E P  we let Gp = { g E G : p k g  = 0 for some k c N } .  
(ii) Set /3 c = rp(Gp/Gp[pk]) = rp(pkGp) for k E N  and p E P .  Note that in case k,p 

this cardinal is infinite, we have /~kC, p = IGp/Gp[pk]l = IpkGpl. 
(iii) Since G is a direct sum of  cyclic groups by Priifer's theorem [27, Theorem 

17.2], for each p C P either Gp = {0}, or there exist an integer rp G > 1 and cardinals 
~G ~G G 0,p . . . . .  ¢ ,p such that e¢,p > 0 and Gp = ®{77(pk+l)(~k~P) : 0 < _ k < _ rpG}. More 

precisely, one can see that eG = rp(pkG[p]/pk+lG[p]) - known as Ulm-Kaplansky k,p 
invariant of  G [27, p. 154]. Obviously, /~G r C k, p = ~ i = k  ~i, p for all k E ~ and p E P. 

It is well known that a bounded torsion Abelian group G admits a compact group 
topology iff all Ulm-Kaplansky  invariants of  G are either finite or exponential [29, 

Section 25]. 
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According to Theorem 6.2 of  [23] a bounded torsion Abelian group G has a pseu- 
docompact group topology iff every cardinal fl~ is either finite or admissible. k,p 

4.1. Theorem. For a bounded torsion Abelian group G and a cardinal a > oJ the 
following are equivalent: 

(a) ~ , ( G )  contains a copy o f  the Boolean algebra P(a ) ;  
(b) G has a pseudocompact group topology o f  weight a; 
(c) G has a pseudocompact group topology and Ps( IGl , a  ) holds; 

(d) Ps ( IGI , a )  holds and for all m E N, ImGI = [G/G[m]I is either finite or 
admissible; 

(e) Ps ( IGI , a  ) holds and every cardinal tic is either finite or admissible. k,p 

Proof.  The implications (a) ~ (b) =~ (c) are trivial. The implication (d) ~ (e) can 
be easily shown as in the proof  of  [23, Theorem 6.2] (see also [20, Theorem 5.2]). To 
prove the implication (c) =~ (d) note that the multiplication by m is a continuous surjec- 
tive homomorphism G --, mG, hence mG~ ~ by the properties of  pseudocompactness 
(see [23, Theorem 6.2], or [20, Theorem 5.2]). 

We prove the remaining implication (e) ==~ (a) for every cardinal a. We need the 
following definition only for this proof: for p E P we call an infinite bounded p-group 
G tame if the leading Ulm-Kaplansky  invariant of  G coincides with the cardinality of  
G, i.e. G = ( ~ { Z ( p k ) ( ~ ) :  1 < k < r}, where ~l . . . . .  c~, r > 1, is a finite sequence of  
cardinals and ek _< C~r for all k = 1 . . . . .  r. In terms of  the cardinals flkap defined in (ii) 
above G is tame iff all fika, p are equal to IG I. 

Next we note that for a tame 
holds. In fact, now the group G 
where pn is the exponent of  G 

Now we pass to the general 
is either finite or admissible. 
~ ( G p )  contains a copy of 
Ps(IGpl,a). 

p-group G the implication (e) ~ (a) o f  Theorem 4.1 
satisfies the hypothesis o f  Theorem 3.3 with ~ = gap, 
and F = Z(pn)(IGI). 

case of  a p-group. Assume that every cardinal fia k,p 
We show then that for each prime p the poset 

the Boolean algebra P ( a )  for each a satisfying 

Consider first the case of  a p-group G = Gp. I f  G is tame then there is nothing to 
prove. We proceed by induction on the number of  nonzero Ulm-Kaplansky  invariants 
of  G. I f  this number is 1, then G = ~ ( p r + l  )(~r) is an glpr+L-free group, so in particular 

tame. Suppose G is not tame and that our claim was already proved for all groups 
satisfying (e) and having less Ulm-Kaplansky  invariants than G. Let t = max{i  < r : 
ei = IGI}. Then t < r and G = G'  ® G" where G'  = ( ~  {7/(p k+l)(xk) : 1 < k <_ t} 

is tame with IG'[ = [GI. Consider the group G",  having less nonzero Ulm-Kaplansky  
invariants than G. From the choice of  t and our assumption it follows that the cardinal 

fl~'; . . . . .  ~k + + ~r flak, p is either finite or admissible for every k > t. So we 
can apply the inductive hypothesis to the group G". In particular, we can claim that 
G" c ~ .  

Hence the proof  of  this case can be concluded by the following 
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n 4.2. Claim. Let G = (~i=lGi be an infinite group with IG] = ]GI[. Assume that Gi 
is a CR-group for 2 < i < n. Then: 

(a) i f  G1 is a CR-group, then also G is a CR-group; 
(b) i f  for each cardinal a Ps(IG1],~r ) implies that ~ ( G 1 )  contains a cop)' of  P(~r), 

then also G has the same property. 

Proof. In both cases it suffices to consider the case n = 2 and then apply induction. 
Let Ps(IG[, a) hold for some ~r. Then Ps(IG11, o) holds. By G2 C ~3 there exists 0' such 
that Ps([G2[,cr') holds. Then by Lemma 1.2 (c) also Ps(lG2[,min{cr,~r'}) holds. 

(a) Assume G1 is a CR-group. Then Ps(]GlI,a) yields that there exists a pseudo- 
compact group topology T1 on GI of weight ~ and a pseudocompact group topology 
T 2 on G2 of weight min{~r, ~r ~} < a. Then the product topology on G is pseudocompact 
and has weight a. 

(b) Choose a family .Y- = {T~} of pseudocompact group topologies on G1 of weight 
order-isomorphic to P(~r). Since G2 is a CR-group there exists a pseudocompact 

group topology T2 on G2 of weight min{~r,a'} _< ~r. Then the family ~- = {To x T2} 

is contained in ~ ( G )  and order-isomorphic to P(~r). [] 

Now we finish the proof of Theorem 4.1 in the general case. Assume that every 
cardinal /3 c is either finite or admissible. We have shown above that for each prime k,p 
p the poset ~ ( G p )  contains a copy of the Boolean algebra P(a)  for each a satisfying 
Ps([Gpl,a ). In particular, each Gp is a CR-group. We now apply item (b) of Claim 

4.2 with Gl the p-primary component Gp satisfying IG] = IGp[. [] 

Now we can answer positively Question 0.1 (and in particular, [12, Question 3.21]) 
for torsion Abelian groups by showing that these groups are CR-groups. We show in 
the next section that the answer to Question 0.1 is negative in the case of divisible 

Abelian groups. 

4.3. Corollary. Torsion Abelian groups in ~3 of  cardinality > c are CR-groups. 

Proof. Follows from the equivalence of items (b) and (c) of Theorem 4.1. [] 

Our next two corollaries give some sufficient conditions under which a bounded 
torsion Abelian group admits long chains of pseudocompact group topologies. 

4.4. Corollary. Let G be a bounded torsion Abelian group having all Ulm-Kaplansky 
invariants either finite or admissible and let ~ >_ ol. Then for each infinite cardinal 

2 the following are equivalent: 
(a) G has a bounded chain of  size 2 of  pseudocompact group topologies of  weight a. 

(b) Ps([GI,a) and C(~r,;t) hold. 

In other words, for any torsion Abelian group G E ~ ( a )  we get the maximum value 

De db ( ~ (G) )  = Ded(~r). 
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4.5. Corollary.  Let G be an infinite bounded torsion Abelian group. Suppose that for 
every p E P and any k <_ rfi the Ulm-Kaplansky invariant ~k,Gp is either finite or 
a~,p~° <_ :~k,Gp _< 2G~P for some infinite cardinal ak, p. Then ~ ( G )  contains a copy of  

P ( a )  for each cardinal a satisfying log [G I < a < 2 rnax{ak,p}. 

Next example shows that Theorem 4.1 is much stronger than both corollaries from 

it. 

4.6. Example .  (a) For an arbitrary p E  P set G = 7/(p) (~) ® 2r(p2) (c). Since flO0,p = fllO, p 
c are 2C-admissible by Lemma 1.1, and all other 6 ,  = flkn S are equal to 0, G has a 

chain with top element of  pseudocompact group topologies of  weight 2 ¢ and length 
max{(2c)  +, 2 (c-)} (by Theorem 4.1, implication ( c ) ~  (a), and the fact that both C(2 c, 
(2¢) +) and C(2C,2 (c+)) hold by Proposition 1.11; see [40] for a similar chain on the 

free Abelian group of  rank c). However  :q =~o is not admissible, and there is no 
infinite cardinal al,p satisfying the inequalities from Corollary 4.5. This shows that 

both Corollary 4.4 and Corollary 4.5 are not applicable for G. 
(b) Let F be a nontrivial finite Abelian group. Then by Corollary 4.4 G = ( ~ F E  

iff r is admissible. In such a case G is a CR-group by Corollary 4.3 (see also [12, 
Theorem 3.3]). The example given in Remark 2.5(b) shows that the former fact cannot 

be extended to non-Abelian groups. 
It is easy to see that if  a group G E  ~3 with IGI = c is a CR-group, then G necessarily 

admits a compact metrizable group topology. The next theorem shows that if  G is also 

Abelian, this is also sufficient for being a CR-group. 

4.7. Theorem. Let G be an Abelian group with IGI = c. Then G is a CR-group iff it 
admits a compact metrizable group topology. 

Proof.  As mentioned above, the necessity is valid also in the general case. Assume 
that G admits a compact metrizable group topology. Then either IGI = r(G) ( =  c) 
or G is bounded torsion. In both cases G E ~3(a) for every a > co such that Ps(c, a)  
holds, i.e. for ~o < a _< 2 c (Theorems 3.3 and 4.1). [] 

As far as non-Abelian groups are concerned, we can mention that, as an easy corol- 

lary of  [23, Corollary 5.14], the free group Fc is not a CR-group, even if Fc E ~3(a) 
for all co < a < 2 c (compare with Corollary 2.6). 

5. Other Abelian groups: connected, divisible, torsion-free, etc 

In this section we measure exclusively the subposet C ~ ( G )  of  connected topolo- 
gies in ~ ' (G)  and the subposet CLC~(G)  of locally connected group topologies of  

C~(G).  
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5.1. Theorem. Let G be an Abelian group. Then for a cardinal a >_ o l  given the 
following conditions are equivalent: 

(i) P s ( r ( G ) , a )  and IGI <_ 2 ~ hold; 
(ii) G admits a pseudocompact connected group topologies of  weight a; 

(iii) there exists an embedding P(~r) ~ C ~ ( G ) ;  
(iv) there exists an embedding P ( a )  ~ C L C ~ ( G ) ;  

In the case rp(G) = 0 for some prime p (in particular, when G is torsion-free) the 
above conditions are equivalent to the following one: 

(v) the poser o f  totally l-disconnected group topologies of  C ~ ( G )  contains a 
copy of  the Boolean algebra P(a) .  

Proof. The implications (iv) ~ (iii) :=> (ii) and (v) ~ (ii) are trivial. The implication 

(ii) =~ (i) is [21, Theorem 3.14] (see also [23, Theorem 3.21] or [11, Theorem 4.15]). 
To prove (i) =:~ (iv) we assume that Ps(r(G),a)  and IGI < 2 ~ hold for the cardinal 

a. Let F be a free subgroup of  G of  cardinality r(G). Then Theorem 3.3 applied to 
G, F,  ~9 = 9,1 provides an embedding of  P(~r) into C L C ~ ( G ) .  

Now assume that rp(G) = 0 hold for some prime p. To prove (i) ~ (v)  assume 
that Ps(r(G),~r)  and [GI < 2 ~ hold. Then there exists a free subgroup FC_G of  
cardinality r(G), so in particular P s ( IF I , a  ) holds. We are going to apply Proposition 
3.2 with 2) = 9,1. To this end we need a compact divisible group H with rq(H) > 0 
for all primes q :/: p.  One can take H to be the Pontryagin dual of  the group Qp of  
rationals with denominators p-powers.  Then H is divisible since Qp is torsion-free 
and rp(H) = 0 since Qp is p-divisible ([19, Chapter 3]), so that 

rAH ~) = 0 (3)  

as well. Since the group H is injective in ~1, it follows from Proposition 3.2 that there 
exists a dense embedding of  G in H ~ as a dense pseudocompact subgroup and a family 
JV of closed subgroup of  H ~ satisfying conditions ( i ) - ( i v )  of  Lemma 2.2. Obviously 
the group H ~ is connected, and we will see now that H ~ is totally l-disconnected. 
Assume K is a locally connected subgroup of  H ~. Then its closure K is a locally 
connected compact subgroup of  H ~. The connected component C of  K is obviously 
open in K. By [23, Theorem 8.5], applied to the connected locally connected compact 
group C, we can claim that the p-torsion part o f  C must be dense in C. By (3) it is 
trivial, hence C = {0}. This yields that K is finite. Thus H ~ is totally /-disconnected. 

According to Lemma 1.16, the property of  being connected and total ly/-disconnected 
satisfies the hypothesis of  Lemma 1.15, so we can get a family ~-- o f  totally 1- 
disconnected topologies in C ~ ( G )  order-isomorphic to P(a) .  [] 

5.2. Remark .  (a) I f  G is Abelian and nonreduced, then G does not admit precompact 
zero-dimensional group topologies, i.e. ~eM(G) = 0. In this theorem one cannot add 
to the list of  properties even "disconnected" since for a divisible group G one has 

~ ( G )  = C ~ ( G )  ([46, Theorem 2]). 
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(b) In case the group G satisfies IGI = r(G) condition (i) reduces to only one 
condition, namely Ps(lGl,a ). This gives a new proof of Corollary 3.4. 

(c) Even if an Abelian G admits a pseudocompact group topology of weight ~o (i.e. 
compact metrizable topology), one cannot guarantee that they exist in huge quantity. 
In fact, for the group of p-adic integers G = 7/p we have [ ~ ( G ) [  = 1. Here one can 

ap mp substitute the group 7/p with any product G = lip ~p(7/p × I-[n=l 7/(pn) ~'"), where each 
6p, mp and ~p,n is finite and these are the sole Abelian groups with this property [19, 
18]. The class ~ of reduced Abelian groups G admitting a unique, up to isomorphism, 
compact group topology was characterized implicitly by Orsatti [34] (for more details 
and further progress in this direction see [18]). 

Now we consider the case of chains of connected pseudocompact group topologies 
on Abelian groups. 

5.3. Theorem. Let G be an Abelian group. Then for cardinals 2 and a > o91 given 
the following conditions are equivalent: 

(i) Ps(r(G),a),  IGI _< 2" and C(a,2)  hold; 
(ii) C L C ~ ( G )  admits a bounded chain of  length 2; 

(iii) C ~ ( G )  admits a bounded chain of  length 2; 
(iv) ~ , ( G )  admits a bounded chain o f  length 2 and C ~ ( ( G ) ) ¢ 0 ;  
(v) ~ , ( G )  admits a bounded chain o f  length 2 and Ps(r(G) ,6)  hold. 

Proof. The implications (ii) =~ (iii) :=> (iv) are obvious. 
(iv) ~ (v) follows from Theorem 5.2. The implication (v) ~ (i) follows from Fact 

1.13 and M~(G)~0. 

(i) ~ (ii) Assume Ps(z,a),  Ial _< 2 ° and C(a,2)  hold. Then by Proposition 5.2 
the poset of connected and locally connected topologies in ~ , ( G )  contains a copy of 
P(a).  Now C(a, 2) applies. [] 

5.4. Corollary. Let G be a torsion-free Abelian group and let 2 be a cardinal. Then 
the following conditions are equivalent: 

(i) CLC~o(G) admits a chain o f  length 2 with both bottom and top elements; 
(ii) the poser of  totally l-disconnected group topologies o f  C ~ ( G )  contains a 

copy of  the Boolean algebra P(a)  and C(a, 2) holds; 
(iii) Ps(lGl,~r) and C(a, 2) hold. 

Proof. The implication (ii) ~ (i) is trivial. The implication (iii) =~ (ii) follows 
from Theorem 5.1 and the implication (i) ~ (iii) follows from the above theorem. 

[] 

5.5. Corollary. Let G be a divisible Abelian group. Then for cardinals 2 and a > o9~ 
given the following conditions are equivalent: 
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(i) Ps(r(G),a),lG [ <_ 2 ~ and C(a,2)hold;  
(ii) CLC~a(G) admits a chain of length 2 with both bottom and top elements; 

(iii) ~o(G) admits a bounded chain of length 2; 
(iv) ~3~(G) has a bounded chain of length 2, and 5P~(G)¢O. 

Proof. The implications (ii) ~ (iii) ~ (iv) are obvious. To prove (iv) ~ (i) it suffices 
to note that every pseudocompact group topology on a divisible group is connected [46, 
Theorem 2], so that ~ ( G ) ¢ ~  yields C ~ ( G ) ¢ ~ .  By Theorem 5.1(i) yields P(a)  
CL C ~(G ) .  This proves the implications (i) =~ (ii). [] 

The following corollary answers item (b) of Question 0.1 for divisible Abelian 
groups. 

5.6. Corollary. Every divisible Abelian group G E ~3 with [G[ > c admits a chain of )~ 
pseudocompact connected and locally connected group topologies of  weight log ]G[ for 
every 2 <Ded(log ]G]) (in particular, for 2=(log IGI)+). Consequently G E ~3(log Ial). 

Proof. Since G E ~3 there exists ~ such that G E ~3(a). For )~ = 1 apply the above 
corollary to get Ps(r(G),a) and IGI _< 2 ~. Then loglG] _< ~r, so that by Lemma 
1.2(a3) this yields 6(log Ial) _< 6(~r). Hence Ps(r(G),loglGI) holds. Now take any 
2 < Ded(log I GI). Since log I GI > o9, the above corollary implies that G admits a 
chain of length 2 of pseudocompact connected and locally connected group topologies 
of weight o. Observe that by Proposition 1.11 C(log I GI, log [GI +) holds, hence we can 
take 2 = (loglG[) +. [] 

The reader has surely observed that the above proof gives more. In fact, an Abelian 
group G admitting a connected pseudocompact group topology (in particular, an Abelian 
group with [GI = r(G), or a torsion-free Abelian group) satisfies the conclusion of the 
above corollary, and hence G c~3(log IG]). 

We show now that no divisible Abelian group G E ~ with IGI = 2 ~(c) (or, more 
generally, with 2 ~(G) < 2 [GI and IGI ~ = IGL) is a CR-group. 

5.7. Theorem. Let G E ~3 be a divisible Abelian group. Then the following hoM: 
(a) I-I(G) < 2 r(G). 
(b) I f  G is a CR-group and IGI °~ = IGI, then r(G) > log21GI, i.e. 2 r(6) = 21Gq. 
(C) I f  IGL = 2 ~(G), then /7([G]) >_ 2 n(G). In particular, G is not a CR-group. 

Proof. (a) Suppose G E ~3(a), then by Corollary 5.5 (applied with 2 = 1) we conclude 
that Ps(r(G), G) holds. By Lemma 1.2 this implies r(G) >_ log a and consequently ~r < 
2 r(c). Hence H(G) < 2 r(6). 

(b) According to Lemma 1.5 Ps(IG[,2iGI) holds, hence H(IGI) -- 21GI. Since G 
is a CR-group, H(G) =/- / ( [a l ) .  Now (a) yields 21Gq < 2r~c). This proves (b) since 

obviously IGI >_ r( G). 
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(c) Assume now [G I = 2 r(a). By (a) [GI = 2 r(G) >_ H(G). Hence H( IGI )=  2 Iol 
2 rt(G). This yields H(IG[) 7~ H(G), hence G is not a CR-group. (Alternatively, if G 
were a CR-group (a) would give Ial = 2 ~(c) _> 2 qGI - a contradiction.) [] 

We describe below some divisible Abelian CR-groups. 

5.8. Theorem. Let G E ~  be a divisible Abelian group such that ]G I is a strong limit 
cardinal. Then G is a CR-group. 

Proof. By Corollary 5.5 G admits pseudocompact group topologies only if IGI = 
r(G). Consequently, according to Theorem 5.1, the group G admits pseudocompact 
group topologies of all possible weights (i.e. G C ~ ( a )  holds for each a satisfying 
Ps(IG I,a)). [] 

The above observations looks more impressive under GCH, in this case we can 
describe the divisible CR-groups (for further results see also [18]). 

5.9. Corollary. Assume GCH and let G be a divisible Abelian group G. 

(a) I f  IGI is a limit cardinal, then G admits pseudocompact group topologies iff 

IGI = r(G) 
(b) I f  GE~3, then the following are equivalent: 
(bl) ]G[ = r(G); 
(b2) G is a CR-group. 

The following example shows that in general the answer to Question 0.1 is negative, 
i.e. there exist Abelian divisible groups in ~3 which are not CR-groups. 

5.10. Example. Let G be a divisible Abelian group such that r(G) ~° = r(G) and 
[G] = 2 r(c). Then according to Theorem 5.7 G is not a CR-group. On the other 
hand, by Lemma 1.1 Ps(r(G),2 r(c)) holds and obviously [G I _< 2 z"~, thus G admits a 
pseudocompact group topology of weight a = 2 ~(c). In fact, C.~(G)  contains a copy 
of P(a)  (Theorem 5.1). 

In our next corollaries we substantially strengthen Theorems 3-5 of [9]. 
We give here explicitly the following corollary of Theorem 5.2. 

5.11. Corollary. I f  ~t = ~ ,  then for ever), Abelian group G with ~ <_ r(G) <_ 2 ~ 
and for every cardinal a satisfying max{cOl,lOg IG[} < a < 2 ~ the poset C L C ~ ( G )  
o f  locally connected group topologies in C ~ (  G) contains a copy of  
P(a),  so the size of  C L C ~ ( G )  is at least 2 ~ and C L C ~ ( G )  contains a chain o f  
length a +. 

Proof. Since a must obviously be infinite, an application of Lemma 1.1 suffices to 
conclude that r(G) is a-admissible. Since IG[ <_ 2 ~, Theorem 5.1 applies. [] 
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5.12. Corollary.  Let G be a torsion-free Abelian group which satisfies ~=~o < [G[ < 

2 ~ for  some cardinal ct. Then for every, cardinal a satisfying max{ogbloglG]} < a < 
2 ~ the poser C L C ~ ( G )  contains a copy o f  P(a) ,  so the size o f  C L C ~ ( G )  is at 

least 2 ~ and C L C ~ ( G )  contains a chain o f  length cr +. In particular, i f  G satisfies 

2 # < IG I <_ 2 2~ for  some cardinal fl, then CLC~2~(G) contains a copy o f  P( f f ) .  

Proof. Theorem 5.1 applies in the first part. Now assume that G satisfies 2 t~ < IG] <_ 
2 2~. Since G is infnite (being torsion-free), the cardinal fl must be infinite. Then the 
first assertion of  the corollary applies to the cardinal ct = f t .  [] 

Let us note that in this corollary "torsion-free" can be replaced by "Abelian with 
IG[ = r(G)" .  In case G is either free (i.e. G = ~)~. 7/) or divisible and torsion-free 
(i.e. G = ~)~,Q) and IGI < a ___ 2 ~ this corollary gives [11, Theorem 6.2], so in 
particular [9, Theorems 4 and 5] when G is a free group. 

Now we give the counterpart regarding ~-free groups. Since it remains true for other 
classes as well, we give it in the following more general form: 

5.13. Corollary. Let ~ be an infinite cardinal and G be a group havin 9 one o f  the 

following algebraic properties: (i) relatively free and residually finite; (ii) torsion 
Abelian; (iii) Abelian with qG[ = r(G). 

(a) I f  ~ = ~o <_ IG [ < 2 ~, then for  every cardinal a satisfying max{o91,1og IGI} < 
a < 2 ~ the poser ~o(G) contains a copy of  P(cr). In particular, the size o f  ~ ( G )  is 
at least 2 ~ and ~ ( G )  contains a chain o f  length a +. 

(b) I f 2  ~ <_ IGI <_ 2 25, then for  every cardinal a such that max{~ol,loglG[} < a < 
2 2" the poset ~ ( G )  contains a copy o f  P(a ) ,  so that the size o f  ~ ( G )  is at least 

2L In particular, the size o f  ~22~(G) is at least 2 2:~ and ~ 2 ~ ( G )  contains a chain 
o f  length max{(2 2~)+, 2 (2~)+ }. 

Proof.  (a) An application of  Lemma 1.5 suffices to conclude that IGI is a-admissible. 
Now Theorem 2.2 applies in case (i), Theorem 4.1 in case (ii) and Corollary 3.4 in 
case (iii). 

(b) Follows from (a) applied with 2 ~ in place of  ~. [] 

Now take G --- ~ ,  Z or G = ( ~  Q in the above corollary. Then item (a) with 
a = 2 ~ gives [11, Corollary 6.3(a)], while item (b) with IG[ < a < 2 25 gives [11, 

Theorem 6.2(ii)], and with a = 22~ gives [11, Corollary 6.3(b)]. 

6. Epilogue: unbounded chains 

Here we discuss unbounded chains. Note that chains with cofinality < a in Mo(G) 
are actually bounded, so that as far as precompact topologies are concerned, "bounded 
chains" can be replaced by "chains with cofinality _< or" in the sequel. The reader 
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should note also that the the existence of a not necessarily bounded chain of length 2 
in ~ ( G )  or ~ ( G )  does not imply C(2, a). 

In terms of the cardinal function Ded we have proved in the preceding sections that 
Dedb(~ (G) )  = Ded(6) ---- D e d b ( ~ ( G ) )  fbr all groups considered in Sections 2-5. 
In the sequel (see Theorems 6.3 and 6.4) we will see that boundedness can often be 
relaxed in this equality, i.e. ~ ( G )  has as long chains as N~(G), so that in terms of 
the function Ded 

D e d ( ~ ( G ) )  = D e d ( ~ ( G ) ) .  (3) 

This justifies the study of D e d ( ~ ( G ) )  which can be reduced to purely combinatorial 
computations depending only on the cardinal number 21GI in case G is Abelian or close 
to being Abelian as the next theorem shows. The condition [G I < 21G/G'I is verified for 
relatively free groups (they satisfy a much stronger condition: ]GI = IG/G~[). 

6.1. Theorem. Let G be an infinite group with JG I < 21a/a'[ and let a be an infinite 
cardinal satisfying ~ (  G) ¢0. Then there exists an embeddin9 p~(2ba/G'l) ~ ~ ( G ) .  

q 
Consequently, /f21a/'6'l __= 21GI (in particular, if  ]G/G'] = ]GI), then . ~ (  G) ~- P~(2 61), 
so that Ded (~o(G))  = Ded (po(21al)). 

A sharper form of this theorem was announced in [16], the proof appears in [3, 
Theorem 7.9]. In view of the properties of the function Ded given in Section 1.2, 
Theorem 6.1 implies that for an infinite group with ]G] < 2 I~/G'I and for an infinite 
cardinal 6 with ~ a ( G ) ¢  ~ the equality D e d b ( ~ ( G ) )  = Ded(cr) holds, in particu- 
lar Ded(Mzlal(G)) = Ded(2161) provided M21cl(G)¢ (~. Moreover, if a < 2 IGI, then 
~2t~l(G) • ~ yields D e d ( ~ ( G ) )  = Ded(P~(a+)), i.e. the existence of a chain of 
length 2 in M~(G) yields the existence of such a chain in Po(6+), hence the cofinality 
of such a chain can be at most 6 +. Theorem 6.1 substantially strengthens the following 
result announced without proof in [11]: Let G be a group with IG/G'I = IGI and sup- 
pose that a cardinal 6 satisfies log IGI < a < 2 IGI. If ~ 6 ( G ) ¢ ~  for some ~ _< ~r then 
the poset Mo(G) contains a chain of length 2 iff P~(2 Ic[) contains a chain of length 
,;.. (Note that the last hypothesis yields ~o(G)¢13 so that Theorem 6.1 applies.) 

In view of the relations 

Ded(a)  = Dedb(~ (G) )  < D e d ( ~ ( G ) )  _ D e d ( ~ ( G ) )  

= Ded(P~(a+)) < Ded(6) + (4) 

it seems interesting to discuss also the question whether the unbounded chains of pseu- 
docompact group topologies have the same lengths as the bounded ones, i.e. whether 
the equality 

Dedb(~a(G)) = Ded (29,(G)) (5) 

holds. Clearly the failure of either (3) or (5) implies D e d ( P , ( 6 + ) ) =  Ded(a)  + which 
by (iii) entails cf(Ded(a))  = 6 +. Hence, by (4), at most one of the equalities 
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(3) and (5) may fail for a given G and a. This proves the following curious 
fact: 

6.2. Theorem. Let G be a group having one of  the following algebraic properties: 
(i) relatively free and residually finite; (ii) torsion Abelian; (iii) Abelian with Ial = 
r(G). Then for every infinite cardinal cr with ~ ( G )  ~ 0 either G has chains of  
pseudocompact group topologies of  weight a of" the same length as those of  the 
bounded ones, or G has chains of  precompact group topologies of  weight a with the 
same length as those of  the chains of  pseudocompact ones. 

In other words, if the chains of  pseudocompact group topologies of  weight a on G 
are "shorter" than those of the precompact ones, then bounded chains of  pseudocompact 
group topologies of weight ~r suffice to get the lengths of  all chains of pseudocompact 
group topologies. 

We offer the following theorem establishing simultaneously the above relations (3) 
and (5) under the condition a = 2 tal or 2 ~ = a +. 

6.3. Theorem. Let G be an Abelian group and a an infinite cardinal with ~ ( G ) ~  O. 
I f  either 2 ~ = ~+ or o" = 2 IGI, then both (3) and (5) hold. In particular, (3) and (5) 

hold simultaneously under GCH. 

Proof. In general 

Dedb(~ , (G) )  = Dedb(~a(G)) < Ded(~a(G))  < D e d ( ~ ( G ) ) ,  

hence it suffices to establish Dedb(Mo(G)) = D e d ( ~ ( G ) )  in both cases. The equality 
2 ° = a+ implies D e d b ( ~ ( G ) )  = Deal(a) = a ++ = D e d ( ~ ( G ) ) .  In the second case 
Dedb(~21~l(G)) = Ded(M21Gl(G)) since now M21c, l(G) has a top element. [] 

In the following theorem we establish (3) under the condition Ps([GI, a +) (beyond 
the necessary condition Ps(IGI,a)) .  The reader should note that this condition yields 
a < 21ci according to Lemma 1.1, but the case a = 2LG/ was already considered in the 

above theorem. 

6.4. Theorem. Let G E ~3 be an infinite Abelian group which is either torsion or 
satisfies r(G) = 161 (or G is torsion-free). Then the following are equivalent for 

every uncountable cardinal a: 
(a) Ps(IGI,a)  and Ps(lGI,a  +) hold; 
(b) there exists an embedding q~: P~(a +) --+ ~ ( G )  such that ~p(P~(a+)) has an 

upper bound in ~(G).  
Consequently, Ded( .~o(G))=  D e d ( ~ ( G ) ) =  Ded(P~(a+)) in the case (a). 

Proof. (a) ~ (b) The group G must be uncountable, so that the case r(G) = IG] 
includes obviously the case when G is torsion-free. Assume that r(G) = IGI. Then 
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there exists a subgroup N of  G such that both N and G/N have the same properties 

as G, i.e. IN I = r ( N )  = IG/NI = r(a/N) = r(G) = IGI, N E ~  and G/NE~3. 

Now assume that G is torsion and set ~ -- IGI. Our hypothesis G E ~3 implies, in 

view of  Theorem 4.10 that G = G1 • G2, where G1 E ~ is a p-group for some prime 

number p, G2 E ~3 has no nontrivial p-torsion elements and I G~I = ~ ___ I G2 I. Moreover, 
there exists n E N + such that G~ = C ® G3, where C ~ -  Z ( p n )  (~) and G3 ~ GI. Since 

G2 ® G3 E ~ and IG2 ® G31 = ~, it follows from Theorem 4.1 and our hypothesis 

Ps (~ ,a )  that G2 ® G3 admits a pseudocompact group topology T of  weight a. Now 
every chain { T j : j E J }  in Mo(C) with an upper bound in N ( C )  will produce a chain 

{Tj x T : j E J }  in Ma(G) of  the same size with an upper bound in M(G). Therefore, 
we can assume without loss o f  generality that G is a p-group isomorphic to ~_(pn)(e) 

for some n E N+. We note next, that in analogy to the case r (G)  = IGI, we can find 
a subgroup N of  G such that both N and G/N have the same properties as G, i.e. 

IN I = [GIN I = ~ and both N and G/N are isomorphic to 7/(pn) (~). 

Let H denote a compact metrizable group, which is either 1- or 2[(p") ~ depending 

on whether G satisfies ]G I = r(G)  or G is isomorphic to ~_(pn)(x). It follows from 

Ps(IN[, a)  and the proof of  Theorem 3.2 that there exist a subset C C_ a with [C[ = 

[a \ C] = a and a G~-dense monomorphism i' :N  --* H a such that i ' (N)  M H c = {0}. 

Analogously we get a G~-dense monomorphism j : G/N ~ H a+. Further, arguing 

as in the proof in Theorem 3.2 we extend i ~ to a monomorphism i : G --+ H a. Let 
f : G --* H a+ be the composition of  the canonical homomorphism G --+ GIN and j .  

This homomorphism need not be continuous, but by the choice of  j the image f ( G )  

is a G~-dense subgroup of  H a+. Since N C_ k e r f  it follows that ker f is G~-dense 
subgroup of  G equipped with the topology induced by the monomorphism i. Hence 

we can apply Claim 6.5 below to this data (see also [15]) to get that the subgroup 

Ff = { ( i ( x ) , f ( x ) )  : x  E G} of  the group L = H a x H a+ is G~-dense in L, thus 
pseudocompact. Note that F f N H  a+ = {0} since Ff is a graph. Let JU be the family of  

closed subgroups of  L defined as follows: for A E P a ( a - )  set NA = H a+\A considered 

as a subgroup of  H a+ . Then o/~" is anti-isomorphic to Pa(a +) and for each NA E Jt# we 

have Ff MNA = {0} and w(L/NA) = w ( H  a x H A) = a. By Lemma 1.15 applied to the 
group L, its subgroup Ff ~ G, the family jt# and the empty property ~ we conclude 
that ~a(G)  contains a copy of  the poser Pa(a+).  

(b) :=~ (a) Assume that there exists an embedding ~0 :Pa(a  +) --* ~a (G)  such that 
qg(Pa(a~-)) has an upper bound in ~ ( G ) .  This gives ~ ' a ( G ) ¢ 0  thus Ps( IGI ,a  ) holds. 
Let T E ~ ( G )  be an upper bound for q~(P~(a+)). Then at = w(G, T)  > a. In fact, since 

height(Pa(a+)) = a + we can find an ordinal chain o f  topologies Ti E qg(Pa(o'+)) of  

length a +. Then T ~ = sup{Ti:i < a + } <_ T and w(G, T ~) = a +. This proves w(G, T)  > 

a since the weight is monotone for precompact group topologies (see item a) of  Fact 

1.13). Now ~ , ( G ) 7 ~ 0  yields Ps([Gl ,a ' ) .  Since a < a + _< a '  this gives Ps( lGl ,a+) .  

The last assertion is obvious. [] 

6.5. Claim. Let  G be a Ga-dense subgroup o f  a topological group K and let i :  

G --* K denote the inclusion. Assume f : G ~ K ~ is a (not necessarily continuous) 
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,~omomorphism into a topological group K' such that f ( G )  is a Go-dense subgroup 
of K' and ker f is Go-dense in G. Then the graph Ff = { ( i ( x ) , f ( x ) ) : xEG}  o f f  is 
a Go-dense subgroup of K x K ~. 

Proof. Let U C K, V C K ~ be nonempty Go-dense subsets of  K and K r. Then there 
exists x E G such that f ( x ) E  V. Consider the inverse image A = {y E G : f ( y )  = f (x)} .  
This is a coset of ker f thus Go-dense subset of G by hypothesis and homogeneity 
of  G. Since U1 = U A G = i - l (U)  is a nonempty Go-dense subset of  G there exists 
yE  U1 NA. Thus f ( y ) =  f ( x ) E  V, while i (y)E U. Therefore ( i ( y ) , f ( y ) ) E  U x V. 

[] 

We do not know if Theorem 6.4 can be extended to non-Abelian groups as well 
(say, relatively free residually finite groups, or even more general, to groups G with 
IG/G't = I C l ) .  

6.6. Corollary. Let G E ~3 be an infinite Abelian group which is either torsion or 
satisfies r(G) = IGI. I f  Ps(IGh,2kGI) holds, then D e d ( ~ ( G ) )  = D e d ( ~ ( G ) )  for all 
~rE [log ]GI,21cl ]. 

According to Lemma 1.5 and 1.6, to violate Ps(IGI,21GI ) one needs IGI ¢ 1GL '°, 
moreover, if cf(1GI) = co (which is equivalent to IGI ¢ IGI "~ under SCH), then 2 <1cl < 
2 Iat must hold. 

We note that the existence of an embedding as in item (b) of Theorem 6.4 is a 
sufficient condition for (3), but we do not know if it is also necessary in general. 

6.7. Question. Is the equality D e d ( ~ ( G ) ) =  Ded(N~(G))  true whenever ~ ( G ) ¢ 0 ?  

6.8. Remark. Here we offer a brief discussion about the possibility to (dis)prove (3) 
in SCH or (M). As already noted above, the failure of (3) implies cf(Ded(a))  = a +. 
Further, in order to disprove (3) one has to ensure the failure of the hypotheses of 
Theorem 6.4 too. This means to find cardinals a and z satisfying co < a < 2 ~ and such 
that condition Ps(z ,a  +) fails while conditions Ps(z ,a )  and cf(Ded(a))  = cr + hold. 
Assume (M). Then by Proposition 1.9 the failure of Ps(z, cr +) gives a + _> 2 <xF. But 
a + = 2 <,F is impossible by the second part of  that proposition in view of the failure of  
Ps(z ,a  +) again. Now a + > 2 <x/~ and H(z) ----2 <'/~ imply that a =-2 <v~. The second 
part of Proposition 1.9 and Ps(z, tr) give log2 <v~ < xF, i.e. 2 <x/~ is not a proper 
limit. Therefore, to violate (3) under SCH one has to take co = cf(z) < cf(2 <~) and 
tr = 2<L Moreover, the cofinality of  Ded(tr) must be a +. Then any Abelian CR-group 
of cardinality z will work (say, a torsion-free group). We are not aware if such a 
choice of z is possible in some appropriate model of ZFC satisfying SCH, in any case 
the example given below in the proof of  Theorem 6.9 with D e d ( w l ) <  Ded(P~o~(co2)) 
cannot help in this case since then (4) fails (so that (3) holds). (The smallest possible 



98 D. Dikranjan/Journal of Pure and Applied Algebra 124 (1998) 65-100 

counterexample could exist for ~ = coo) > c and a = ~+. We do not know if one can 
also arrange to have c f ( D e d ( r + ) ) =  z++.) 

Now we show that the equality (5) cannot be proved in ZFC. 

6.9. Theorem. The equality 

Ded(~@o,, (~) )  = Dedb(.~o~,(~)) (6) 

cannot be decided in ZFC. 

Proof. Under GCH, (6) holds as proved in the above Theorem 6.4. It is shown in [3] 
that there exists a model 9J/of  ZFC in which Ded(Eo1(og2)) > Ded(o91 ). Note that both 
Ps(c, ogl) and Ps(c, o92) hold. Thus for the group E (and for any torsion-free Abelian 

group of cardinality c) we have Ded(~o, (~ ) )  = Ded(Eol (o92)) by Theorem 6.4, while 
Dedb(~o),(N)) = Ded(o91) < Ded(~,~,(N)). Therefore (6) fails in this case. [] 

Let us note that in Mitchell's [31] model 93l of  ZFC applied in [3] one has Ded(Po~, 
(o92)) = Ded(o91 )+ and Ded(ogl ) = 2 ̀ 0' . Hence, in this model E has unbounded chains 
of pseudocompact group topologies of weight o91 of length 2 °~', while every bounded 
chain of  such topologies has length < 2 °~' . 

Historical remark. The first results of  this paper (namely: a preliminary version of the 
key Lemma 2.2, the equivalence of (iii), (iv) and (v) in Corollary 2.4, Theorem 5.3, 
the equivalence of (i) and (iii) in Corollaries 5.4 and 5.5) were obtained in October 
1990 jointly with Dmitri Shakhmatov after having seen an unpublished version of [8] in 
September 1990. Later the author developed the approach based on embedding of large 
posets in ~ ( G )  and ~ ( G )  and obtained the results on bounded chains (Sections 2-5)  
by the end of 1992. The question of whether unbounded chains (in ~ ( G )  or N~(G)) 
can be "longer" than the bounded ones was the starting point of [3] in December 
1992. In 1993, the author finished Section 6, helped by the knowledge of some of the 
main results of [3]. The main results of this paper were announced at the Conference 
on Groups, Galway, Ireland, 1993 [16]. Chains and other features of the poset of  
precompact  group topologies were discussed also in a survey-talk at the Colloquium 

on Topology, Szeksz~rd, Hungary, 1993 [17]. 
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